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Green Scheduling of Control Systems for Peak Demand Reduction

Truong X. Nghiem, Madhur Behl, Rahul Mangharam and George J. Pappas

Abstract— Building systems such as heating, air quality
control and refrigeration operate independently of each other
and frequently result in temporally correlated energy demand
surges. As peak power prices are 200-400 times that of the
nominal rate, this uncoordinated activity is both expensive
and operationally inefficient. We present an approach to fine-
grained coordination of energy demand by scheduling the
control systems within a constrained peak while ensuring
custom climate environments are facilitated. The peak con-
straint is minimized for energy efficiency, while we provide
feasibility conditions for the constraint to be realizable by
a scheduling policy for the control systems. The physical
systems are then coordinated by the scheduling controller so
as both the peak constraint and the climate/safety constraint
are satisfied. We also introduce a simple scheduling approach
called lazy scheduling. The proposed control and scheduling
strategy is implemented in simulation examples from small to
large scales, which show that it can achieve significant peak
demand reduction while being efficient and scalable.

I. INTRODUCTION

Building systems such as heating, ventilating, air condi-
tioning and refrigeration (HVAC&R) systems, chiller sys-
tems, and lighting systems operate independently of each
other and frequently trigger concurrently, resulting in tem-
porally correlated power demand surges. Most commercial
buildings are subject to peak demand pricing which can
be over 200 times that of the nominal power rate [1] and
this uncoordinated behavior results in both expensive and
inefficient energy consumption.

While there exist several different approaches to balance
power consumption by load shifting and load shedding, they
operate on coarse grained time scales and do not help in
de-correlating energy sinks. The focus of this paper is on a
new approach for fine-grained scheduling of control systems
within an aggregate peak power envelop while ensuring the
custom climate conditions are maintained within the desired
ranges. We achieve this by combining: (a) minimization
of the feasible peak power constraint of the systems; and
(b) coordination of the individual systems within a global
schedule to satisfy the said constraint.

While traditional real-time scheduling algorithms [2] may
be applied to such resource sharing problems, they impose
stringent constraints on the task model. Generally, real-time
scheduling is restricted to tasks whose worst case execution
times are fixed and known a priori. While this simplifies
the runtime complexity, for control systems it does not
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effectively capture the system’s behavior whose operation
is dependent on the plant dynamics and environmental con-
ditions. A contribution of this paper is the formulation of
a framework for scheduling control tasks with an aggregate
resource envelope. Although [3] used a similar model, the
authors assumed a periodic task activation model so that
traditional real-time scheduling algorithms could be applied.
This made the system less flexible to changes in system
dynamics because task scheduling was not based on state
feedback. We provide schedulability conditions and a state-
feedback scheduling scheme for a set of control systems. The
proposed model is scalable and effective for the large class
of systems with affine dynamics.

Recently, a popular approach to energy efficient control for
commercial buildings and data centers is model predictive
control (MPC) ([4], [5], [6], [7]). MPC is a flexible and
well-developed advanced control technique with broad appli-
cations in complex systems ([8], [9], [10]). In [4] the authors
investigated MPC for thermal energy storage in building
cooling systems. Stochastic MPC was used to minimize
building’s energy consumption in [5], while peak demand
reduction by MPC with real-time electricity pricing was
considered in [6]. However, the scalability of this approach
for large systems might be limited due to its high computa-
tional requirement for optimization. Though our approach
also utilizes optimization, it is more scalable while still
effective in reducing peak demand. This is achieved by
decomposing the system into a feasible peak minimization
and a scheduling controller, as presented in the rest of
this paper. In [11] optimal On-Off control was considered
for air conditioning and refrigeration, in which temperature
bounds were statically optimized for a single system. Our
approach dynamically coordinates a large number of systems
to achieve energy efficiency.

The rest of the paper is structured in the following manner.
Section II presents the problem considered in this paper and
our approach to solve it. Section III formulates the task
model that abstracts dynamic systems, whose schedulability
analysis is provided in Section IV. We present in detail the
proposed approach in Sections V and VI, and two simulation
examples of different scales in Section VII. Section VIII
concludes the paper with a road map of our future work.

II. PROBLEM FORMULATION

This paper presents a control approach for reducing peak
power demand of the heating system of multiple zones.
Consider n > 1 zones. Each zone is heated by a heater,
whose power can be controlled to vary its heat input rate to
the zone. However, its power cannot be changed continuously



but on a discrete scale, e.g., 50%, 75%, and 100% of full
power. A heater can also be turned off when it consumes
no energy and provides no heat input. The aggregate power
demand is the sum of the powers of individual heaters.
Similarly, the aggregate energy consumption is calculated by
summing all individual energy consumptions. In a demand-
based tariff for commercial energy customers, the utility
bill is calculated by Bill = pu × Tot + pd × Peak where
Peak is the peak aggregate demand, Tot the total energy
consumption, pu the usage price, and pd the demand price.
Here, pd is much higher than pu, e.g., by approximately 240
times in Pennsylvania, USA [1]. The high penalty for peaks
in power consumption means that reducing the peak demand
not only saves energy but also makes a system cost effective.

A. System modeling

Let us denote the heat input rate of the heater in zone i,
1 ≤ i ≤ n, by Qi ≥ 0 (kW), which can only receive values
from a finite set Qi determined by the allowable power
levels of the heater. The thermal environment of zone i is
comfortable for its occupants if its air temperature, denoted
by xi (◦C), stays between a lower threshold li and an upper
threshold hi > li. Let Ta be the ambient air temperature
(◦C). For simplicity, we assume that there are no thermal
interactions between zones, there are no disturbances, and
the ambient air temperature is the same for all zones. The law
of conservation of energy gives us the following simplified
heat balance equation for zone i:

Ci
dxi

dt = Ki (Ta − xi) +Qi (1)

where Ci is the thermal capacity of the zone (kJ/K) and Ki

the thermal conductance between the zone and the ambient
air (kW/K). It follows that:

dxi

dt = −Ki

Ci
xi +

(
Ki

Ci
Ta + Qi

Ci

)
= −aixi + bi (2)

in which
ai = Ki

Ci
, bi = Ki

Ci
Ta + Qi

Ci
. (3)

Let Pi(Qi) be the fixed power demand of heater i corre-
sponding to heat input rate Qi, where Pi(Qi) ≥ Qi due to
the energy efficiency of the heater. It is assumed that we do
not have closed-form expressions of the mappings Pi. When
heater i is turned off, Qi = 0 and Pi(Qi) = 0.

In a billing cycle B > 0, usually 1 month, the total energy
consumption is Tot =

∫ B
0

∑n
i=1 Pi(Qi(t)) dt and the peak

demand is Peak = max0≤t≤B
∑n

i=1 Pi(Qi(t)). The goal
of an energy efficient control policy for these zones is to
reduce either Tot or Peak or Bill while ensuring that zone
temperatures are always within corresponding thresholds. In
this paper, we consider the control problem for peak demand
reduction, as stated below.
Problem 1: Compute control input Qi(t) ∈ Qi for each
heater i, 1 ≤ i ≤ n, at time t, 0 ≤ t ≤ B, so as to minimize
the peak demand Peak while maintaining thermal comfort
in each zone, i.e., xi(t) ∈ [li, hi] at all time.

In practice, each heater is commonly controlled by a
thermostat, usually with a two-position rule (i.e., ON/OFF

rule). The simplest strategy to reduce peak demand is to set
each heater to its lowest power. However, the thermostats
are uncoordinated, which often leads to high peak power
demand. For instance, it is possible that at one time, all
heaters are turned on, causing a spike in power demand.

B. Scheduling control for peak demand reduction

Problem 1 can be formulated as an optimization. First,
the system models are discretized with a period ∆T > 0 to
obtain difference equations xi(t+1) = Aixi(t)+BiQi(t)+
DiTa(t) for each i = 1, . . . , n. The initial air temperatures of
the zones are x0,i ∈ [li, hi]. Then the optimization program
for minimizing peak demand during a finite horizon N > 0,
where N∆T = B, is formulated as:

minimize max
0≤t≤N−1

∑n
i=1 Pi(Qi(t)) (4)

subject to xi(t+ 1) = Aixi(t) +BiQi(t) +DiTa(t)

xi(0) = x0,i

xi(t) ∈ [li, hi] , Qi(t) ∈ Qi

in which the constraints are satisfied for all 0 ≤ t ≤ N − 1
and all 1 ≤ i ≤ n. The variables are the control inputs
Qi(0), . . . , Qi(N − 1) for each i (that is n ×N variables).
Since N is usually very large1, a popular approach to this
problem is model predictive control (MPC) with horizon
H � N ([8], [4], [5], [6]). One drawback of MPC is its
computational requirement for solving optimization at each
time step. Since (4) is a combinatorial optimization (recall
that Qi are finite sets), this requirement is generally very
high, especially for large systems. This paper presents an
alternative approach which is efficient and more scalable.

In our approach, each zone and its heater are abstracted
as a control task and the n zones as a set of n tasks. As
recommended by [12], the power demand is constrained:∑n

i=1 Pi(Qi(t)) ≤ Pmax where Pmax is the peak per-
missible demand. Pmax is an optimization variable and is
often calculated offline. However, in our approach, Pmax is
imposed indirectly by reducing Qi and restricting the number
of heaters that can be on simultaneously to k, for 1 ≤ k ≤ n,
while maintaining the feasibility of this restriction for the
tasks. By that, Pmax is the sum of the k largest powers of
the heaters. Then the tasks are coordinated, i.e., the heaters
are switched on and off, under that constraint while ensuring
thermal comfort in all zones. Specifically, Problem 1 is
decomposed into two sub-problems (Fig. 1):
• Feasible peak minimization: for an ambient air tem-

perature Ta, we compute Qi and k to minimize Pmax

while maintaining schedulability of the tasks:

minimize Pmax ({Pi(Qi)} , k, Ta)

subject to 1 ≤ k ≤ n, Qi ∈ Qi ∀i = 1 . . . n

tasks are schedulable,

where k and Qi, i = 1, . . . , n, are variables. Since this
minimization depends only on Ta, which usually varies

1For example, if billing cycle B = 30 days and ∆T = 15 min then
N = 2880.
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Fig. 1. Control and scheduling structure.

slowly, it only needs to be re-computed at a slow rate
(e.g., every hour) during which Qi and k are fixed.

• Scheduling control: we switch on and off the heaters so
that the constraint set by the feasible peak minimization
is satisfied and thermal requirements are maintained,
i.e., each zone temperature stays within its given thresh-
olds at all time. The scheduling controller is a state-
feedback controller (Fig. 1).

The first concern regarding this approach is how much Pmax

can be reduced while ensuring that the tasks are schedulable.
This question will be addressed in the feasibility analysis in
Section IV, after the formulation of task model in the next
section. Section V will discuss the feasible peak minimization
and Section VI will present the scheduling controller.

III. TASK MODEL

In this section, we define a task model to abstract the
dynamic systems being coordinated. Each system has a
state variable (e.g., room temperature) whose dynamics is
governed by the current mode of the system. A task T is a
tuple (x, l, h,X0,M, dyn) in which:
• x ∈ R is the continuous state variable;
• l ∈ R and h ∈ R, where l < h, are the lower and upper

thresholds of the state x, respectively;
• X0 ⊆ [l, h] is the set of initial states;
• M is a finite set of operation modes;
• dyn : M×R→ R specifies the dynamics in each mode.

A schedule for task T is a function m : R≥0 → M which
specifies the operation mode m(t) ∈ M of T at any time
t ≥ 0. Given a schedule m, the task’s state trajectory is
a function x : R≥0 → R satisfying the differential equation
ẋ(t) = dyn(m(t), x(t)) for every t ≥ 0 and with x(0) ∈ X0.

In this paper, we consider tasks with two operation modes:
M = {ON,OFF}. In addition, the dynamics of a task in each
mode is given by an affine differential equation as follows:

ẋ(t) =

{
−a+x(t) + b+ if m(t) = ON
−a−x(t) + b− if m(t) = OFF

(5)

where a+ > 0, a− > 0, b+ and b− are parameters. We
assume that when T is ON, its state x grows, and when it is
OFF, x decays. In particular, if T is ON during an interval
[t1, t2], the growth of x is given by

x(t) = b+

a+ +
(
x(t1)− b+

a+

)
e−a

+(t−t1), t1 ≤ t ≤ t2

where x(t1) < b+

a+ and x(t) asymptotically converges to b+

a+

as t→∞ (Fig. 2). Similarly, if T is OFF during an interval

t

x

b−

a−

b+

a+

l

h

ON OFF ON OFF ON
Fig. 2. Task dynamics.

[t1, t2], the decay of x is given by

x(t) = b−

a− +
(
x(t1)− b−

a−

)
e−a

−(t−t1), t1 ≤ t ≤ t2

where x(t1) > b−

a− and x(t) asymptotically converges to b−

a−

as t → ∞ (Fig. 2). Thus x is bounded between b−

a− and
b+

a+ , and a−, a+, b−, b+ must satisfy b−

a− < b+

a+ . The state
thresholds are such that [l, h] ⊂ ( b−

a− ,
b+

a+ ), that is

b−

a− < l < h < b+

a+ . (6)

The dynamics of T is illustrated in Fig. 2.
A task is safe if its state always stays within the desired

interval [l, h]; otherwise, it is unsafe. Let T be a set of
n > 1 tasks: T = {Ti}i=1,...,n. We index the variables
and parameters of Ti by a subscript i, for example xi and
hi. A scheduling policy for T is an algorithm that specifies
the mode of every task Ti in T at any time during their
execution. A schedule or scheduling policy for T is safe if
it can keep all the tasks in T safe. Besides ensuring that all
tasks are safe, a scheduling policy must satisfy a system-wide
resource constraint that at most k tasks can be in mode ON
simultaneously at any time, where k is given and 1 ≤ k ≤ n.
T is schedulable by a policy π if π is a safe scheduling policy
for T and the resource constraint is met. If T is schedulable
by some scheduling policy, it is feasible; otherwise, if T is
not schedulable by any policy, it is infeasible.
Remark 1: Although the results in this paper are presented
for systems resembling heated zones or buildings, they can
be readily extended to systems which decay in ON mode
and grow in OFF mode (e.g., cooling systems) by a change
of variables. The applications are certainly not limited to
heating and cooling systems but any system which can be
abstracted by the task model defined in this section.

IV. FEASIBILITY ANALYSIS OF TASKS

This section presents theorems for the feasibility and
infeasibility of a set T of tasks as defined in the previous
section. Their proofs can be found in [13].

The first theorem states a sufficient infeasibility condition.
Theorem 1 ([13]): For each task Ti ∈ T , define

di =
a−i li − b

−
i

(a−i li − b
−
i )− (a+i li − b

+
i )

. (7)

If d =
∑n

i=1 di > k then T is infeasible.
The next theorem provides a feasibility condition for the

same task set T in Theorem 1.



Theorem 2 ([13]): If d < k and at most k tasks start at
their lower thresholds then T is feasible.

A. Interpretation of d
Consider the value di for task Ti as defined in (7). It is

straightforward to show that 0 < di < 1 and di is strictly
increasing as li increases. We have

di
∣∣−a+i li + b+i

∣∣ = (1− di)
∣∣−a−i li + b−i

∣∣
in which | − a+i li + b+i | and | − a−i li + b−i | are respectively
the growing and decaying rates of xi at li. As xi increases,
the growing rate decreases while the decaying rate increases.
It follows that, intuitively, di is the minimum fraction of
time that Ti must be ON in order to keep xi above li. For
example, if di = 0.6 then on average, Ti must be ON for at
least 60% of the time to stay safe. In other words, di can
be thought of as the minimum utilization of task Ti. This
minimum utilization is important because we must ensure
that at most k tasks can be ON simultaneously, whereas there
is no such constraint on the number of OFF tasks.

With this utilization-based interpretation of di, Theorems 1
and 2 become more intuitive. If d > k, the minimum total
utilization of the tasks exceeds the resource capacity, thus
they are infeasible. On the other hand, if d < k then it is
possible to schedule them. The case when d = k is tricky.
The minimum total utilization does not exceed the capacity;
however, the actual total utilization is always larger than d
due to the tasks’ dynamics. Therefore the tasks are infeasible.
The following corollary is straightforward.

Corollary 3: T is feasible if and only if d < k and at
most k tasks start at their lower thresholds.

V. FEASIBLE PEAK MINIMIZATION

In this section, we go back to Problem 1 and present the
feasible peak minimization sub-problem in our approach.

Recall that this minimization is to compute Qi, for i =
1 . . . n, and k so as to minimize the peak permissible demand
Pmax, subject to the constraint that with these values of Qi

and k, the tasks are feasible (Section II-B). As presented in
Section IV, the feasibility of T is determined by the value
d, which is the sum of the values di defined in (7). Each di
depends on li, a−i , a+i , b−i , and b+i . It can be seen from (3)
that while li, a−i and a+i are fixed, b−i and b+i depend on Ta
and Qi. Thus we can write d (Ta, {Qi}) as a function of Ta
and all Qi for i = 1, . . . , n. The feasible peak minimization
is formulated as:

minimize J = Peak ({Pi(Qi)} , k) (8a)
subject to Qi ∈ Qi, i = 1, . . . , n (8b)

k ∈ {1, . . . , n} (8c)
d (Ta, {Qi}) < k (8d)

in which:
• The variables are k and Qi for i = 1, . . . , n.
• Peak ({Pi(Qi)} , k) computes the peak permissible de-

mand by summing the k largest values in the set
{Pi(Qi)} of tasks’ powers.

• Constraint (8d) specifies the feasibility condition.

A. Complexity of feasible peak minimization

Recall that Qi is the set of input heat levels of heater i
excluding its OFF mode, and is finite. Thus (8) is a combi-
natorial optimization and in the worst case would require
us to search over all combinations of Qi, i = 1, . . . , n.
For each combination, k is assigned to the smallest integer
greater than d (constraint (8d)). The number of possibilities
is
∏n

i=1 |Qi|. As a comparison, the MPC in (4) is also a
combinatorial optimization with the number of possibilities
being

∏n
i=1 (1 + |Qi|)H , where H is the MPC horizon and

1 is added for the OFF mode. Since H is often greater
than 1, the complexity of the MPC optimization is often
exponentially larger than that of (8).

Although the feasible peak minimization is complex, its
performance can be significantly improved by applying sev-
eral boosting techniques which reduce the size of the search
space. For instance, for the same value of k and a given
combination (Q1, . . . , Qn), a new combination can reduce
the objective function Peak only if at least one of the Qi

is decreased. By only examining combinations that have the
potential to decrease Peak and skipping the rest, the search
space can be reduced in size. Similar techniques can be used
for the MPC optimization (4).

Moreover, since the only changing parameter in (8) is Ta,
the feasible peak minimization can be carried out off-line to
obtain a table of solutions (k, {Qi}) for each range of values
of Ta. In run-time we only need to look up the solution in
that table for the current value of Ta. This feature of the
proposed approach allows it to be scalable and makes its
implementation simple and light computationally.

VI. SCHEDULING CONTROLLER

The role of the scheduling controller is to carry out fine
grained scheduling of the tasks based on state feedback from
the zones (Fig. 1). It must ensure two constraints:
• Resource constraint: at most k tasks can be ON simul-

taneously; and
• Safety constraint: tasks always remain safe, i.e., xi(t) ∈

[li, hi] at all time for every i = 1, . . . , n.

A. Scheduling control problem

Once the feasible peak minimization has computed a
solution, the values of Qi, for i = 1, . . . , n, and k are fixed
until its next invocation. Meanwhile, each task Ti can only
be turned ON or OFF. Let mi = 1 when Ti is ON and
mi = 0 when Ti is OFF. The dynamics of xi is given
by (5). Let x = [x1, . . . , xn]

T ∈ Rn denote the vector of
states and m = [m1, . . . ,mn]

T ∈ {0, 1}n the vector of
modes of all tasks. The resource constraint is equivalent to
the constraint m ∈ M where M = {m | ‖m‖1 ≤ k}. For
matrices X,Y ∈ Rm×n, their Hadamard product X ◦ Y
is defined as [X ◦ Y ]ij = XijYij . Let diag(v) denote the
diagonal matrix constructed from the entries in vector v.
Then the dynamics of the entire system is governed by

ẋ(t) = A0x(t) +B0 + (A1x(t) +B1) ◦m(t) (9)



in which the control inputs are m(t) ∈M and

A0 = −diag
([
a−1 , . . . , a

−
n

])
, B0 =

[
b−1 , . . . , b

−
n

]T
A1 =−diag

([
a+1 , . . . , a

+
n

])
−A0, B1 =

[
b+1 , . . . , b

+
n

]T−B0

The safety constraint requires that x(t) must stay within the
invariant set I = [l1, h1]×· · ·×[ln, hn] at all time. Therefore
the scheduling control problem can be stated as follows:
Problem 2: (Scheduling control problem) Compute the con-
trol inputs m(t) for system (9) so that at all time t:

1) m(t) ∈M; and
2) x(t) ∈ I.

Because the solution returned by the feasible peak minimiza-
tion satisfies the feasibility condition in Theorem 2, such a
scheduling controller always exists.

Essentially, a scheduling controller together with the tasks
is a hybrid system S ([14]) with continuous state x, dis-
crete modes M, affine dynamics (9), and mode transitions
determined by the controller. This system must be safe with
respect to the set I. The transition from mode m ∈ M
to mode m′ ∈ M, m′ 6= m, is associated with a guard
gm→m′(x) on the system’s state. Whenever S is in mode m
and gm→m′(x) is satisfied, S switches to mode m′. Thus,
a scheduling controller is equivalent to a set G of guards
gm→m′ for all pairs of modes (m,m′) such that S is safe.

B. Lazy scheduling controller

The number of discrete modes inM is |M| =
∑k

j=0 ( n
j ).

When n and k are large, |M| becomes very large and a
scheduling controller for the tasks can be large and complex.
We propose a simple scheduling control policy called lazy
scheduling. It is termed as lazy because switching decisions
are only made when a task reaches either of its thresholds.
Thus mode transitions only occur at the boundaries of the
invariant set I, and as long as x is in the interior of I, the
tasks stay in their current modes.

The lazy scheduling controller is simple. A task is critical
if its state is at its lower threshold, thus it must be switched
ON immediately. Let function 1 : 2T → {0, 1}n map a
subset O ⊆ T of tasks to mode vector m = 1(O) such that
mi = 1 if and only if Ti ∈ O. At time t, let m be the current
mode and m′ the next mode, i.e., m′ is the decision of the
controller. Then the lazy scheduling algorithm is as follows:

1) If li < xi(t) < hi for all i then m′ = m; otherwise
2) Let C = {Ti |mi = 0 ∧ xi(t) = li} be the set of

critical tasks and D = {Ti |mi = 1 ∧ xi(t) < hi} the
set of tasks that can remain ON. Note that C ∩D = ∅.
There are three cases:

a) If |C| ≥ k then m′ = 1(C); otherwise
b) If |C| + |D| > k then select a subset D′ ⊆ D of

(k − |C|) tasks and m′ = 1(C ∪ D′); otherwise
c) m′ = 1(C ∪ D).

If x is in the interior of I then Step 1 keeps the current
mode. At the boundaries of I, Step 2 turns OFF tasks at
their upper thresholds, turns ON critical tasks, and keeps
the other tasks’ current modes so that at most k tasks can
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Fig. 3. Ambient air temperature profile.

be ON in m′, unless there are more than k critical tasks
(Step 2a). By construction, the lazy scheduling controller
is safe. It also tries to satisfy the resource constraint, but
will violate it in the highly improbable event that more than
k tasks become critical at exactly the same time. This can
be avoided if a look-ahead rule is employed, in which the
controller predicts whether such a situation may happen and
switches ON certain tasks ahead of time.

VII. SIMULATION RESULTS

We implemented the feasible peak minimization and the
lazy scheduling controller in MATLAB, and compared the
proposed approach to uncoordinated On-Off control and
MPC in two examples of different scales.

A. Small-scale example

We considered 5 zones whose parameters were randomly
generated around mean thermal capacity C̄ = 5000kJ/K
and mean thermal conductance K̄ = 0.35 kW/K. They were
heated by identical heaters with 5 heat input rates, Q =
{3, 6, 9, 12, 15} (kW), and corresponding power P (Q) =
{3.26, 6.29, 9.24, 12.14, 15} (kW). Zone temperatures must
be kept between l = 20 ◦C and h = 22 ◦C. We simulated
them with uncoordinated On-Off control, MPC with 15-
minute time steps and 3-step horizon, and our proposed green
scheduling control. The simulation time was 10 hours. The
ambient temperature profile is given in Fig. 3. In Fig. 4 are
simulated zone temperatures, which always stayed inside the
desired range. Fig. 5 plots the aggregate power demands
of all controllers for comparison. Table I reports the peak
demands and total energy consumptions.

B. Large-scale example

The previous example was extended to a larger scale.
There were two groups of zones. The first consisted of 10
zones similar to those in the small-scale example. The second
consisted of 10 significantly larger zones: their parameters
were randomly generated around mean thermal capacity C̄ =
30 000 kJ/K and mean thermal conductance K̄ = 1.4 kW/K.
The heaters for these zones were also larger, with heat input
rates Qlarge = {15, 30, 45, 60, 75} (kW) and corresponding
power P (Qlarge) = {16.31, 31.44, 46.18, 60.68, 75} (kW).
Because the MPC optimization became much larger in this
example (cf. Section V-A), we implemented for each group
of zones an MPC controller with 15-minute time steps and
1-step horizon. Note that increasing the horizon to 2 would
have made the MPC optimization intractable because of
the large search space. Similarly, for the green scheduling
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Fig. 4. Zone temperatures for small-scale example: uncoordinated On-Off
control (top), MPC (middle), green scheduling control (bottom).
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Fig. 5. Power demands for small-scale example: uncoordinated On-Off
control (black), MPC (blue), green scheduling control (red).

controller, we solved the feasible peak minimization for each
group of zones separately. Again, all controllers managed
to keep zone temperatures in the desired range. Their peak
demands and energy consumptions are reported in Table I.

C. Performance

Compared to the On-Off controller, the other two con-
trollers significantly reduced the peak demand by about
40% or more (Fig. 6). Energy consumptions were similar,
although the On-Off controller always consumed a little
more. The MPC controller was slightly better than the green
scheduling controller in terms of peak demand.

In the large-scale example, the feasible peak minimiza-
tion took approximately 1.3 seconds on average. Thus, the
proposed approach is scalable for large systems, even with
online optimization. For comparison, each MPC optimization

TABLE I
PEAK DEMANDS P (kW) AND ENERGY CONSUMPTIONS E (kW h).

Small-scale example Large-scale example
On-Off MPC Green On-Off MPC Green

P 60.68 31.24 36.41 587.87 331.90 347.49

E 243.97 233.27 234.14 2401.07 2286.5 2280.77

Small-scale Large-scale

100% 100%

51.5% 56.5%60% 59.1%

On-Off
MPC
Green

Fig. 6. Peak demand percentage (On-Off control as baseline).

took an average of approximately 174 seconds to complete.

VIII. CONCLUSION

A formulation for the scheduling problem of multiple
control systems was presented. We proposed a new approach
to energy efficient control of systems by combining optimiza-
tion and scheduling. The optimization, which can be carried
out efficiently and off-line, sets a feasible peak demand while
the scheduling controller coordinates the systems within that
constraint. Through simulations, this approach was shown
to be effective in reducing peak demand and scalable for
large systems. Its implementation is also simple and light
computationally. This work is an initial step in the direction
of resource and energy efficient coordination of control
systems. In the future, we aim to extend the results to incor-
porate more complex system dynamics and disturbances. We
are also investigating dynamic pricing models, operational
efficiency and task-specific cost functions for system-wide
optimization.
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