
Abstract
The nexus of robotics and autonomous systems and artificial intelligence (AI) has the

potential to change the nature of human guided exploration of indoor and outdoor spaces. Such
autonomous mobile robots can be incorporated into a variety of applications, ranging from
logistics and maintenance, to intelligence gathering, surveillance, and reconnaissance (ISR). One
such example is that of a tele-operator using the robot to generate a map of the inside of a
building while discovering and tagging the objects of interest. During this process, the tele-
operator can also assign an area for the robot to navigate autonomously or return to a previously
marked area/object of interest. Search and rescue and reconnaissance abilities could be
immensely improved with such capabilities.

The goal of this research is to prototype and demonstrate the above autonomous
capabilities in a mobile ground robot called Explorer51. Objectives include: (i) enabling an
operator to drive the robot non-line of sight to explore a space by incorporating a first-person
view (FPV) system to stream data from the robot to the base station; (ii) implementing automatic
collision avoidance to prevent the operator from running the robot into obstacles; (iii) creating
and saving 2D and 3D maps of the space in real time by using a 2D laser scanner, tracking, and
depth/RGB cameras; (iv) locating and tagging objects of interest as waypoints within the map;
(v) autonomously navigate within the map to reach a chosen waypoint.

To accomplish these goals, we are using the AION Robotics R1 Unmanned Ground
Vehicle (UGV) rover as the platform for Explorer51 to demonstrate the autonomous features.
The rover runs the Robot Operating System (ROS) onboard an NVIDIA Jetson board, connected
to a Pixhawk controller. Sensors include a 2D scanning LiDAR, depth camera, tracking camera,
and an IMU. Using existing ROS packages such as Cartographer and TEB planner, we plan to
implement ROS nodes for accomplishing these tasks. We plan to extend the mapping ability of
the rover using Visual Inertial Odometry (VIO) using the cameras. In addition, we will explore
the implementation of additional features such as autonomous target identification, waypoint
marking, collision avoidance, and iterative trajectory optimization. The project will culminate in
a series of demonstrations to showcase the autonomous navigation, and tele-operation abilities of
the robot. Success will be evaluated based on ease of use by the tele-operator, collision
avoidance ability, autonomous waypoint navigation accuracy, and robust map creation at high
driving speeds.

Introduction

Semi-autonomous and fully-autonomous vehicle design is becoming more common in
military technology. Unmanned aerial vehicles (UAVs) as well as unmanned ground vehicles
(UGVs) are poised to take over battlefields as the technology for these systems rapidly advances.
Fully-autonomous vehicles perform tasks with minimal direct user input, essentially transferring
the decision-making power from the human to the robot. The fact that systems designed for
complete autonomy must be able to make a variety of decisions on their own makes them very
complex to design. Meanwhile, semi-autonomous vehicles typically perform some, usually
simple, tasks autonomously, but rely on the assistance of a remote operator to perform riskier
tasks.
 The benefits of these systems are numerous and aim to reduce operational risk in
unfamiliar environments. This lack of risk along with the ability to pursue objectives relentlessly
has changed the conduct of military operations [1]. For example, being in hostile environments
without knowledge of the operational space presents a potentially dangerous position for humans

to be in. However, if an unmanned vehicle can provide reconnaissance data to the humans
before they enter the environment, the situation becomes much less dangerous.
 Previous University of Virginia capstone teams have developed a 3D-printed unmanned
ground vehicle (“the rover”) consisting of commercial off-the-shelf parts. This design made the
rover relatively cheap to build as well as simple enough for nontrained personnel to maintain and
operate. The ability to operate both indoors and outdoors while providing real-time data to the
operator was considered essential for the rover. To achieve this, the rover was fitted with a
LIDAR that could scan the space around the rover and send the data back to the operator via
WiFi. Using this data, a map of the rover’s local environment and the pose of the rover within
the map is generated during operation with Google Cartographer’s simultaneous localization and
mapping (SLAM) algorithm. Lastly, in an attempt to avoid damaging the rover, obstacle
avoidance was implemented that would stop the rover in the event of a potential front-end
collision.

Objectives and Methods

Rover design goals included improving the ability and performance of a rover with the
purpose of exploring uncharted areas which are too dangerous for humans. The test area for the
rover was the Link Lab Arena at the University of Virginia.

The first step to prepare the rover for realistic scenarios is to allow an operator to
comfortably drive the robot non-line-of-sight. The initial robot design had no way of doing this,
and this goal is essential for non-human exploration. This will be evaluated by successfully
navigating the robot through routes of tables and hallways which are out of view of the operator.

Improving the rover’s mapping capabilities is the second goal. If the rover’s mission is at
all successful, the operating personnel will need an accurate scan of the area providing important
intelligence. Additionally, it was determined in discussions with the MITRE team that the rover
should be able to flag and save points of interest, or waypoints, within the map for later
investigation or avoidance. To this end, the rover should have the ability to save a realistic map
after exploring an indoor region, be able to localize itself within a map, and be able to save
waypoints at input locations in the map.

For the next step in improving the rover’s performance, it was determined that it was
common for the operator to accidentally run the rover into walls or other obstacles while
exploring in realistic indoor conditions. This could come from several factors, including a
lagging connection, poor conditions, or excess speed. A safe collision avoidance feature that
halts the robot’s motion if a collision is imminent and enables quick and smooth recovery would
provide for seamless exploration and lesser risk of damage to the rover.

If all of these goals are accomplished, there is still a disconnect between what the
operator sees while exploring and what the rover sees and saves for later. A two-dimensional
map provides some insight into the rover’s surroundings, but a three-dimensional map would
greatly improve this connection for improved human interpretation as well as more accurate
visual inertial odometry, which is the robot’s process of placing itself within its surroundings.
The integration of three-dimensional mapping would accomplish this goal.

To further expand the rover’s operational capabilities, it should be able to autonomously
navigate toward previously placed waypoints on a map, or back to the initial position. This
would involve both global and local path planning, pose and velocity control, and obstacle
avoidance.

Current Design

1) 2.4 GHz External Antennae. 2) Battery compartment and interior access. 3) LiDAR. 4) HERE

M8N GPS Module 5) First-person camera. 6) Intel RealSense D435 depth camera. 7) Intel
RealSense T265 tracking camera.

Hardware

It was decided early on to transition from the original 3D-printed rover to the AION
ROBOTICS R1 UGV. Both provide similar internal hardware, but the R1 has a larger, more
rugged chassis with room to house additional hardware components. Both are controlled by a
Pixhawk running ArduPilot software paired with an Nvidia Jetson TX2 microcontroller. The
Jetson communicates with the Pixhawk, which is most directly responsible for handling input
from a radio control (RC) transmitter and controlling the motors, via the MAVLink protocol. The
Jetson also runs some form of the Ubuntu operating system, on top of which the Robot Operating
System (ROS) is used to integrate with the rover’s various sensors.

The onboard LiDAR is the RPLIDAR A2. Compared to the previous chassis, the LiDAR
is positioned in a higher and more central location on the rover, allowing a larger range of
LiDAR scans. Scans from the LiDAR are accessible to the Jetson through a ROS node.

Two Intel cameras, the RealSense D435 depth camera and the T265 tracking camera,
were added in order to enhance the rover’s three-dimensional mapping capabilities. The depth
camera provides RGB and depth images of its surroundings, useful for creating a visual 3D map.
The tracking camera includes two fisheye cameras, an additional inertial measurement unit
(IMU), and on-board SLAM. All of these data are also accessed via ROS.

To allow more remote tele-operation of the rover outside of the operator’s line of sight,
an analog camera was mounted to the front of the chassis. This camera was connected to an
additional radio, separate from the either of the Pixhawk or Jetson microcontrollers. Video feed
from this radio could thus be streamed directly to analog monitors or headsets with lower latency
than with Wi-Fi.

Software
The on-board Jetson computer ran Robot Operating System (ROS), a flexible framework

for writing robotics programs that allows Ubuntu Linux to control the physical components of
the rover. ROS was originally selected by a prior UVA capstone team because it can intuitively
support a wide range of robotics algorithms. Like the team before us, the package Google
Cartographer was used for simultaneous localization and mapping (SLAM) within a 2D space.
Cartographer uses SLAM to transform the output data from the LiDAR sensor to generate and
visualize an overhead map of the space in real time, displayed in Rviz. We continued the use of
Google Cartographer for 2D SLAM and MAVLink override messages to implement obstacle
avoidance.

While the ArduPilot software already implements simple object avoidance with LiDAR,
it requires the LiDAR to be directly plugged into the Pixhawk, leaving it unavailable to be used
for other purposes, such as 2D SLAM.
 Moving to a 3D space, a Real-Time Appearance-Based Mapping (RTAB-Map) algorithm
was used to create a 3D of the rover’s surroundings. RTAB-Map uses an incremental approach to
detect and close loops. The SLAM algorithm looks a thet new image and compares it to existing
elements in the live map. Based on the appearance of the image in combination with its
iodimetry, RTAB-Map is able to decide, detect and fix if a loop in the map exists.
 Timed Elastic Band planner (TEB planner) is used for anonymous navigation and
obstacle avoidance, it locally optimizes the rover’s trajectory with respect to the trajectory
execution time.

Results
Obstacle Avoidance

The obstacle avoidance code from the previous project had two main drawbacks: Both
forward and backward controls locked when an obstacle in front was detected, and did not stop
the new rover from crashing. The control lock was relaxed by checking if new distance readings
were the same as previous ones. The new rover had a faster top speed, enabling drivers to crash
into obstacles faster than the avoidance node could detect them. Increasing the distances the node
checks for obstacles fixed this problem for the newer rover.

The modifications made to the obstacle avoidance were not tested rigorously, but were
able to consistently detect objects as thin as a table leg (2”) and stop the rover’s forward motion.
The robot however did find it difficult to account for transparent objects in its path, such as glass
windows.

Area Mapping

Previous work on the rover had solely used data from a 2D LiDAR to generate its maps,
and faced issues with their map shifting after the rover turned. After some tweaking of
Cartographer configuration files, short-term map quality improved. The 2D map has still been
seen to drift after some more extended operation, but this appears to self-correct after some time.

An example of a drifting map (left), where the hallway entrance in the bottom right on a

second visit does not match up with how it was originally mapped. After a delay, this error is
fixed (right).

This implementation may work for the simple task of navigating around a space, but is

incapable of determining which objects actually occupy the space. For this purpose, we chose to
employ a D435 depth camera for its RGB and depth imaging capabilities, in order to create a 3D
point cloud of its field of view.

Images provided by the RealSense D435 camera showing both an RGB image (left) and the

depth view of the same scene generated by its depth cameras (right).

 The D435, along with real-time appearance-based mapping (RTAB-Map) software,
allows the rover to generate 3D colored maps of its surroundings. In basic testing, this feature
worked very well to generate maps that allowed for easy identification of the objects within;
however, because it relies solely on previous images, this method is slow. Full testing of this
feature paired with the tracking camera and attached to the moving rover has yet to be
conducted.

Waypoint Saving

A waypoint saver node was written to listen if a predefined button on the RC transmitter
is pressed and, if so, to remember the rover’s current position and orientation. These values are
then used to create a marker which is both saved by the node for later use and published for
visualization in software such as rviz. Rviz can then display the markers as points of interest on

the map. By simply changing the trigger from a button press to another action, the robot could
potentially perform the entire process autonomously.

Waypoint markers (green) within a 2-dimensional map of the arena
created by Cartographer’s SLAM algorithm with LiDAR input.

Visual Inertial Odometry

The previous SLAM implementation used by the rover relied solely on the laser scan data
provided by the LiDAR. The relatively low sample rate of the LiDAR being used caused the map
generated by Google Cartographer to slip any time that the rover turned too quickly or objects
moved while the rover was in motion, causing the rover to lose its pose and be unable to navigate
the previously mapped environment autonomously.
 To alleviate this issue, we planned to use visual-SLAM (V-SLAM) using an Intel
RealSense T265 tracking camera to assist Cartographer in determining the pose of the rover.
Compared to implementing wheel odometry or using the IMU that already exists in the Pixhawk,
the T265 camera comes with V-SLAM out of the box which would make it relatively simple to
implement into the existing code base on the rover. This method is valuable in that the robot’s
pose and velocity can be estimated using a minimum of one camera, and it serves as a cheap
alternative to relying on GPS and LiDAR-based odometry to obtain visual information [2].
 Unfortunately, this feature was not able to be tested on the rover, so it is unclear how
much the slipping problem was mitigated.

Autonomous Navigation

An overarching goal was to provide the rover with autonomous navigation capable of
traveling within a map to reach a chosen waypoint. A ROS navigation stack was implemented
that uses odometry and sensor data to output velocity directions back to the rover. Timed Elastic
Band (TEB) planner package is a plugin to this navigation stack that would provide the rover

with autonomous navigation capabilities. TEB was selected because it locally optimizes the path
of the rover against a calculated trajectory that updates as the rover’s surroundings change. It is
able to reroute the rover’s projected path to the specified waypoint as the environment changes
and new obstacles arise. Unfortunately, this package was never fully implemented, so it is
difficult to speculate on its effectiveness without any trials.

Recommendations/ Future Work

Full implementation and testing of the features we were unable to complete would be a
good starting place to continue this project. These features include: autonomous waypoint
navigation using TEB Planner, full-scale 3D mapping with the Intel RealSense D435 and T265
cameras, and object of interest tagging using object detection. Explorer51’s next steps would
have included integrating the two RealSense cameras in order to quickly obtain robust three-
dimensional maps of the surrounding space, allowing for more advanced algorithms to determine
optimal pathing and waypoint navigation under fully-autonomous navigation. These would have
been the biggest areas of development had the project not been cut short by COVID-19.

Conclusion

Continued development of a multimodal UGV has the potential to further improve robot
operation in critical scenarios. Accurate obstacle avoidance measures and area mapping
capabilities pave the way for both semi- and fully-autonomous driving modes, minimizing the
risk of damage to the robot and maximizing the amount of information gathered as the robot
explores its surroundings. The ability to save and display two- and three-dimensional maps of
the space provides tangible data for the robot and the operator to make optimal decisions in time-
sensitive operations, as well as a foundation to identify targets and waypoints of interest for
further analysis.

Given more time to test and improve the current rover’s design and functional
capabilities, using such a robot would be beneficial in many ISR applications as a supplementary
resource. Being able to search a previously unexplored area and pinpoint targets with close
precision, all without employing human actors until necessary, would be invaluable in a
multitude of high-risk scenarios.

Acknowledgement

The Explorer51 team would like to thank Nathan Gaul, Grant Showalter, Andy Chapman,
Michael Balazs, and the rest of MITRE Corporation for their guidance and valuable
contributions to this project.

References
[1] Office of the Secretary of Defense. 2005. “Unmanned aircraft systems roadmap,
 2005-2030.” apps.dtic.mil/docs/citations/ADA445081
[2] D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial robots,” arXiv:1906.03289

Author Information
Gabriel Argush, Student, Department of Engineering Systems and Environment, University of
Virginia.
William Holincheck, Student, Department of Engineering Systems and Environment, University
of Virginia.
Jessica Krynitsky, Student, Department of Engineering Systems and Environment, University
of Virginia.
Brian McGuire, Student, Department of Engineering Systems and Environment, University of
Virginia.
Dax Scott, Student, Department of Engineering Systems and Environment, University of
Virginia.
Charlie Tolleson, Student, Department of Engineering Systems and Environment, University of
Virginia.
Madhur Behl, Assistant Professor, Department of Computer Science and Department of
Engineering Systems Environment, University of Virginia.

