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Abstract—Heating, cooling and air quality control systems
within buildings and datacenters operate independently of each
other and frequently result in temporally correlated energy
demand surges. As peak power prices are 200-400 times that
of the nominal rate, this uncoordinated activity is both expensive
and operationally inefficient. While several approaches for load
shifting and model predictive control have been proposed, we
present an alternative approach to fine-grained coordination of
energy demand by scheduling energy consuming control systems
within a constrained peak power while ensuring custom climate
environments are facilitated. Unlike traditional real-time schedul-
ing theory, where the execution time and hence the schedule are
a function of the system variables only, control system execution
(i.e. when energy is supplied to the system) are a function of the
environmental variables and the plant dynamics. To this effect, we
propose a geometric interpretation of the system dynamics, where
a scheduling policy is represented as a hybrid automaton and the
scheduling problem is presented as designing a hybrid automaton.
Tasks are constructed by extracting the temporal parameters of
the system dynamics. We provide feasibility conditions and a
lazy scheduling approach to reduce the peak power for a set of
control systems. The proposed model is intuitive, scalable and
effective for the large class of systems whose state-time profile
can be linearly approximated.

Keywords-Scheduling; Energy Systems; Peak Power Reduction;
Load Balancing;

I. INTRODUCTION

During a major sporting event such as the NFL Super
Bowl which is watched by over 111 million people, the
power supply companies are anxious. When a commercial
break begins, most viewers open the fridge to get a drink
and within a minute several million refrigerator compressors
and microwaves trigger, causing massive spikes in energy
demand. Human behavior is responsible for the high temporal
correlation of energy demand, frequently causing peak power
consumption. Similarly, at the scale of a single commercial
building, heating, ventilating, air conditioning and refrigera-
tion (HVAC&R) system, chiller systems, and lighting systems
trigger concurrently resulting in power demand spikes several
times in a day. Most commercial buildings are subject to peak
power pricing which is 200-400 times that of the nominal
power rate [1] and this uncoordinated behavior results in both
expensive and inefficient power consumption.

While there exist several different approaches to load bal-
ance power consumption by load shifting and load shedding
(e.g. [2]),they operate on coarse grained time scales and do
not help in de-correlating energy sinks. The focus of this
paper is on a new approach for fine-grained scheduling of
control systems within an aggregate peak power envelop while
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Fig. 1: From control to scheduling.

ensuring the custom climate conditions are maintained within
the desired ranges. We achieve this by extracting the temporal
parameters across multiple control loops and specifying their
timing requirements within a global schedule with a peak
power constraint(Fig. 1). While traditional real-time schedul-
ing algorithms [3] may be applied to such resource sharing
problems, they impose stringent constraints on the task model.
Generally, real-time scheduling is restricted to tasks whose
worst case execution times are largely a function of the system
specification, are fixed, and are known a priori. While this
simplifies the runtime complexity, for control systems it does
not effectively capture the systems behavior whose operation
is dependent on the plant dynamics, environmental conditions
and initial system state.

For example, consider a commercial building, where the
tasks are different control loops that maintain the temperature
within a dead-band. The execution time associated with each
control task is the duration for which energy is consumed
by the task. Classical fixed priority and dynamic real-time
scheduling are based on a fixed resource requirement for each
task and are therefore able to arbitrate the use of the shared
resource with explicit design-time admission control and fea-
sibility requirements. When control processes are mapped to
tasks, their execution time is a function of the plant state
(e.g. dimensions of the room, ingress and egress airflow),



environment conditions (e.g. outside weather, human occu-
pancy), operational requirements (e.g. temperature/humidity
set points, air quality) and the initial state of the system.
These external factors contribute to elastic execution times
where a system may have to perform more work, the longer
the task’s response time due to the natural degradation of the
uncontrolled plant’s state. This elastic task model is difficult
to incorporate within the current formulation of real-time
scheduling and thus prompts to provide a new perspective on
the problem.

The primary contribution of this effort is in the formulation
of a framework for scheduling energy consuming control
systems that require a peak power constraint. For example,
reducing the peak power consumption of a set of control
tasks while ensuring that all tasks meet their stability and
performance requirements. We approach this with a geometric
interpretation of the system dynamics, where a scheduling
policy is represented as a hybrid automaton and the scheduling
problem is presented as designing a hybrid automaton. Tasks
are constructed by extracting the temporal parameters of the
system dynamics. We provide feasibility conditions and a lazy
scheduling algorithm to reduce the peak power for a set of
control systems. The proposed model is scalable and effective
for the large class of systems whose state-time profile is linear.

In Section II, we formulate the task model that abstracts
dynamic systems. Section III discusses the applicability of
real-time scheduling approaches for scheduling of control
tasks with elastic execution times. Section IV presents the
geometric interpretation of tasks and the scheduling problem.
We provide the schedulability analysis for the linear case in
Section V, a lazy scheduling algorithm in Sections VI and
VII which implements the proposed scheme. We conclude
the paper with related work followed by a discussion in
Sections IX and X along with a roadmap of our future work.

II. TASK MODEL

In order to create a schedule for the dynamic systems that
are being coordinated we first abstract them as tasks. At any
time, each system must be in one of pre-defined operation
modes, which governs its dynamics. Each system has a state
variable (e.g., room temperature) that grows or decays with
time according to the dynamics in its current mode. The state-
time profile of a dynamic system determines how this state
variable varies with time in each mode. Performance or safety
specifications require that each system must operate within an
acceptable region, defined by an upper threshold and a lower
threshold for its state.

Each system can be abstracted as one task. A task T is a
tuple (x, l, h,X0,M, dyn) in which:
• x ∈ R is the continuous state variable;
• l ∈ R and h ∈ R, where l < h, are the lower and upper

thresholds of the state, respectively;
• X0 ⊆ [l, h] is the set of initial states;
• M is a finite set of operation modes;
• dyn : M × R → R is a mapping that specifies the

dynamics in each mode.
At any time t ∈ R≥0, where R≥0 is the set of non-negative
reals, the value of the task’s state, denoted by x(t), must
always stay within [l, h]. The operation mode of T at time
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Fig. 2: State-time profile of a linear task.

t is denoted by m(t) ∈ M . The task’s dynamics satisfy the
differential equation ẋ(t) = dyn(m(t), x(t)) with x(0) ∈ X0.

In a discrete-time system, time t can only receive non-
negative integer values and the mode of a task can only be
changed at these discrete time instants. As a consequence, the
task’s dynamics is described by a difference equation instead
of a differential equation: x(t+ 1) = dyn(m(t), x(t)).

In this paper, we consider tasks with two operation modes,
M = {ON,OFF}. In addition, we only consider linear
tasks which have linear state-time profiles. Specifically, the
dynamics of a linear task is defined as:

ẋ(t) = dyn(m(t), x(t)) =

{
a if m(t) = ON
−b if m(t) = OFF

where a and b are strictly positive constants. When a task T is
in ON mode, a is the rising slope (or growth rate) of its state.
When T is in OFF mode, b is the falling slope (or decay rate)
of its state. Fig. 2 illustrates the state-time profile of a linear
task. Note that our definition of linear tasks is different from
the notion of linear systems in control theory [4].

A task T is said to be safe if its state stays within the
desired interval [l, h] at all times; otherwise, T is said to be
unsafe. Let T be a set of n > 1 tasks: T = {Ti}i=1,...,n. A
scheduling policy for T is an algorithm that specifies the mode
of every task Ti in T at any time during the execution of the
tasks. Besides ensuring that all tasks are safe, a scheduling
policy usually has to satisfy other system-wide constraints
such as a resource constraint which limits the number of
tasks that can be executed at the same time. A task set T
is schedulable by a policy π if π can schedule the tasks in T
so that they are all safe and that all system-wide constraints
are met. If T is schedulable by some scheduling policy, it is
feasible; otherwise, i.e., T is not schedulable by any policy, it
is infeasible. The problem of finding a scheduling policy for
a feasible task set T , often subject to additional constraints or
optimality conditions, is a scheduling problem.

In the rest of this paper, we consider a set T of n > 1 linear
tasks with two operation modes (M = {ON,OFF}). We also
impose a system-wide resource constraint that at most one task
can be in mode ON at any time.

III. REAL-TIME SCHEDULING INTERPRETATION

In this section, we compare the task model in Section II with
that in real-time systems ([3]) and show that traditional fixed
priority and dynamic scheduling policies, based on a fixed
worst-case execution time, do not work well for this model.

In the traditional task model, a task is a sequence of jobs.
Each job has a release time, an execution time, and a deadline.
Our task model is based on the physical processes underlying
the systems, thus it is more dynamic. A task is executed when



it is switched ON by the scheduler. There is no notion of
release time in our model because tasks are always available
unless they are at their upper thresholds. When a task is OFF,
its relative deadline is determined by system and environmen-
tal dynamics (e.g. heating rate, human occupancy, weather
conditions) and its current state, and can vary from very short
to very long. The execution time of a task is defined as the
time between the moment it is switched ON and the moment
it reaches its upper threshold if it remains ON. Clearly, the
execution time of a task is not constant but dependent on its
dynamics and its state. After a task is switched ON, its actual
execution time can vary and is determined by the scheduler.
This time will indirectly determine the deadline of the task
after being switched OFF, since it determines the state of the
task. As a result, in our task model, the temporal parameters
of the tasks are not fixed but varying and highly dependent
on the dynamics of the tasks. Furthermore, there are complex
relations between the parameters.

Two well-known real-time scheduling algorithms for the
traditional task model are the rate-monotonic (RM) and ear-
liest deadline first (EDF). Because of the lack of release time
and task rate in the proposed model, the RM algorithm does
not translate to our task model. In addition, RM assumes a
fixed worst case execution time for all tasks and is unable
to factor in elastic execution times which are a function of
environmental and process-related factors. On the other hand,
since the notion of a deadline is well defined in our task model,
the EDF algorithm can be used, in which the scheduler always
switches ON the task with the earliest deadline. Nevertheless,
it has different successes on different platforms.

Consider a continuous-time platform on which we schedule
two tasks {T1, T2} using the EDF algorithm. For the purpose
of presentation, we scale these tasks so that h1 = h2 = h and
l1 = l2 = l. Let di(t) denote the deadline of task Ti at time t.
Without loss of generality, assume that initially the deadline of
T1 is earlier than that of T2. Thus, initially, T1 is ON and T2 is
OFF. As time t progresses, the deadline d1(t) of T1 increases
and approaches d2(t) which remains at d2(0). There are two
possibilities that can happen:

1) State x1(t) reaches the upper threshold h before d1(t)
reaches d2(t) (Fig. 3a): in this case, T2 remains OFF
while the EDF scheduler must switch T1 OFF so as it
does not exceed the upper threshold. However, after an
infinitesimal time, T1 becomes available again and must
be switched ON. Then immediately it reaches h and
must be switched OFF. This process is repeated infinitely
fast in continuous time. Therefore, a Zeno phenomenon
happens and the time cannot progress.

2) Deadline d1(t) reaches d2(t) before x1(t) reaches h
(Fig. 3b): in this case, T2 is switched ON and T1 is
switched OFF. Immediately d2(t) exceeds d1(t) and the
scheduler must switch their modes, then the process
repeats. Again, a Zeno phenomenon happens.

Therefore, the EDF algorithm does not work on an ideal
continuous-time platform due to the Zeno phenomenon.

On a discrete-time platform where the tasks can only be
switched at discrete time instants, the Zeno phenomenon can
always be avoided. However, it is straightforward to see that
the switching rates of the tasks can be high, in the worst
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Fig. 3: Zeno phenomenon by EDF in continuous-time.

case at every discrete instants. This is unfavorable in real
systems, especially in HVAC or mechanical systems, because
not only does it affect the system performance, it also reduces
the lifetime of the equipment. Furthermore, aperiodic server-
based scheduling schemes such as the Constant Bandwidth
Server (CBS) [3] which are designed to incorporate variable
execution times, do not work well here as they build in their
own hysteresis in servicing tasks and only provide a statistical
guarantee for the overall system’s stability.

The failure and the unfavorable performance of traditional
real-time scheduling algorithms for our task model motivate
the development of a lazy scheduling algorithm, which is
presented in the next section and also in Section VI.

IV. GEOMETRIC INTERPRETATION

In this section, we present a geometric interpretation of
tasks, scheduling policies and the scheduling problem, which
provides a more intuitive and appropriate scheduling frame-
work for control systems. For simplicity, we consider in this
section two linear tasks T1 and T2 which are normalized so
that their bounds are both [0, 1].

Define a 2-dimensional state vector x = [x1, x2]
T ∈ R2.

The state space of the system is the set R2. Any state x(t) of
the system at time t is a point in this state space. The invariant
set of x is the unit square in R2 defined by the bounds of the
two tasks. In Fig. 4, it is the grayed square. The set of initial
states, not illustrated in Fig. 4, is a subset of the invariant set.
There are three scheduling modes:
• Mode 0: T1 and T2 are OFF. The dynamics of the system

is specified by vector v0 in Fig. 4, that is if the system is
in mode 0 for a duration ∆ after time t then x(t+ ∆) =
x(t) + ∆v0.

• Mode 1: T1 is ON and T2 is OFF. The dynamics of the
system is specified by vector v1 in Fig. 4.

• Mode 2: T1 is OFF and T2 is ON. The dynamics of the
system is specified by vector v2 in Fig. 4.

The most important goal of a scheduling policy for these tasks
is to keep x(t) inside the invariant set using only the mode
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vectors v0, v1 and v2. For a set of n linear tasks, the state
space becomes n-dimensional and the mode vectors are vi for
i = 0, 1, . . . , n.

A. Scheduling problem as hybrid automaton design

Using the geometric interpretation, a scheduling policy can
be represented as a hybrid automaton and the scheduling
problem can be cast as designing a hybrid automaton [5].
The hybrid automaton for T1 and T2 has three discrete states
corresponding to the three scheduling modes (Fig. 5). The
directed edges between them represent the switchings between
modes. A transition from one mode to another is caused by
an event which occurs when the system state hits a guard
associated with that edge. In Fig. 5, gij is the guard for the
transition from mode i to mode j. Generally, a guard gij has
the form ĝij(x) ≤ 0 in which ĝij : R2 → R is a function
mapping a state x to a real number. In many cases, a guard
has a simple linear form cTx ≤ f for some vector c and some
scalar f . A scheduling policy π for the task set is simply a
set of guards {gij}, and the scheduling problem is equivalent
to designing these guards. A discrete-time scheduling policy
corresponds to a discrete-time version of the hybrid automaton
defined above.

B. Lazy scheduling policy

A simple scheduling policy is the lazy policy: all tasks stay
in their current modes as long as they are all safe, and only
switch modes when their states hit a threshold. This policy
corresponds to the following set of guards (for two tasks):
• g01 and g21 are both (x1 ≤ l1);
• g02 and g12 are both (x2 ≤ l2);
• g10 is (x1 ≥ h1 ∧ x2 > l2);
• g20 is (x2 ≥ h2 ∧ x1 > l1).

Fig. 6 illustrates the lazy policy for the two tasks in Fig. 4.
The blue boundaries are the guards. The blue vectors represent
the dynamics of the system at the boundaries. The red points
and red lines represent a critical situation when the system

0

x2

x11

1
g20

v0 v0 v0

g10

v0

v0

v0

g01, g21

v1

v1

v1

g02, g12

v2 v2 v2

Fig. 6: Lazy scheduling policy for 2 tasks.

ends up at the origin, where both tasks must be switched
ON immediately but only one of them can and the other will
become unsafe. For these particular tasks, it is straightforward
to see that the system is only in a critical situation if its state
is on the red dashed line while it is in mode 0. Note that the
red dotted line never happens because it requires mode 1 but
it starts from a point on the g20 guard which will switch the
system to mode 0.

V. FEASIBILITY OF LINEAR TASKS

In this section we look at theorems that govern the feasi-
bility and infeasibility of a set of n linear tasks T = {Ti} as
defined in Section II.

A. Infeasibility result
At time t ≥ 0, let ton,i be the total time since the beginning

(i.e., t = 0) that task Ti is ON. Clearly, 0 ≤ ton,i ≤ t and the
total time since the beginning that Ti is OFF is toff,i = t−ton,i.
The resource constraint requires that∑n

i=1 ton,i ≤ t. (1)

The state of task Ti at time t can be computed as

xi(t) = x0,i − bitoff,i + aiton,i = x0,i − bit+ (ai + bi)ton,i

where x0,i = xi(0). Define new variables x̂i =
xi−x0,i

ai+bi
, i =

1, . . . , n. We have that

x̂i(t) = − bi
ai + bi

t+ ton,i = −dit+ ton,i

in which di = bi
ai+bi

> 0. The safety constraint requires that
l̂i ≤ x̂i ≤ ĥi where l̂i =

li−x0,i

ai+bi
and ĥi =

hi−x0,i

ai+bi
.

Taking the sum of all x̂i(t) gives

x̂(t) =
∑n

i=1 x̂i(t) = −
∑n

i=1 dit+
∑n

i=1 ton,i (2)

with the constraint that l̂ =
∑n

i=1 l̂i ≤ x̂(t) ≤ ĥ =
∑n

i=1 ĥi.
Let d =

∑n
i=1 di > 0. Using (1) and (2), we obtain the

following inequality

x̂(t) ≤ (1−
∑n

i=1 di) t = (1− d)t. (3)

Inequality (3) gives us a condition on the infeasibility of the
set of tasks, as stated in the following theorem.

Theorem 1. If d > 1, the set T of linear tasks is infeasible.

Proof: If d > 1 then 1 − d < 0. By inequality (3), x̂(t)
is bounded above by a strictly decreasing function (1 − d)t.
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By time t = l̂/(1− d) ≥ 0 at the latest, x̂(t) will violate the
safety constraint, regardless of the scheduling policy.

The geometric interpretation of tasks (section IV) provides
a good intuition of Theorem 1. If there exists a surface S
containing x(t) such that all mode vectors at x(t) are on the
same side of S then clearly for any scheduling policy, state
x will go further to this side and will eventually go out of
bound. This is illustrated in Fig. 7 where the state is moved
from x(t) to x(t′) at some later time t′ > t and the surface S
is shifted to S′ towards the lower left corner of the invariant
set. The condition d > 1 in Theorem 1 implies this situation
as shown in the following theorem.

Theorem 2. If d > 1, for any state x, there exists a surface
S containing x such that all mode vectors vi, i = 0, 1, . . . , n,
are on the same side of S.

The proof for this theorem is straightforward by choosing
space S with normal vector v:

v = −
[

1
a1+b1

1
a2+b2

· · · 1
an+bn

]T
then showing that for all mode vectors vi, i = 0, 1, . . . , n, we
have 〈vi, v〉 > 0 where 〈·, ·〉 denotes the inner product of two
vectors.

B. Feasibility result

Knowing that d > 1 implies infeasibility of the task set
(Theorem 1), it is natural to ask whether d ≤ 1 implies
feasibility. In this section, we provide an answer to that
question by presenting a feasibility result for a set of linear
tasks on a continuous-time platform where there is no technical
constraint on when a task can be scheduled. Hence, on this
platform, a task can be switched ON and OFF arbitrarily fast
or slow as long as it satisfies the safety constraint.

We proceed with the main feasibility theorem.

Theorem 3. If di is rational for every i = 1, . . . , n and d =∑n
i=1 di ≤ 1 and at most one task starts at its lower threshold

then the task set is feasible on a continuous-time platform.

Proof: If more than one task start at their lower thresholds
then the task set is infeasible because at least one task will
violate its safety constraint regardless of the schedule. We can
assume that at the beginning, no tasks start at their thresholds,
i.e., li < xi(0) < hi for i = 1, . . . , n. Indeed, if there are
tasks starting at their thresholds, among which at most one
can start at its lower threshold, we can always schedule the

tasks for a short period of time τ > 0 so that li < xi(τ) < hi
for all i = 1, . . . , n.

To prove feasibility, we will construct a periodic schedule
for the tasks, specified by a time period ∆?

T and an ordering
sequence ρ = (ρ1, . . . , ρQ)ω of length Q, where each ρk ∈
{0, 1, . . . , n} indicates which task is ON during interval k,
and the superscript ω means that the sequence is repeated
indefinitely. If ρk = 0 then all tasks will be OFF. Define
time instants tk = k∆?

T , k ≥ 0. The sequence ρ is designed
so that state x always repeats after one recurrence of ρ, i.e.,
x(tk+Q) = x(tk) for any k ≥ 0. The time period ∆?

T is
chosen so that starting from a safe initial state x(0), x(tk) is
safe for every k = 1, 2, . . . , Q− 1. Therefore, for any k ≥ 0,
x(tk) = x(t(k mod Q)) is safe. Thus, the task set is (safely)
schedulable by the constructed periodic schedule.

a) Constructing sequence ρ: For each task Ti, since di
is rational, we can write di = pi

qi
where pi, qi ∈ N. Let Q

be a common multiple of all qi, for i = 1, . . . , n, then we
can write di = Pi

Q for some Pi ∈ N. We assign to each ρk
in ρ an integer between 0 and n so that for each integer i ∈
{1, . . . , n}, the number of times it appears in ρ is exactly Pi.
Because d =

∑n
i=1 di =

∑n
i=1

Pi

Q ≤ 1, we have
∑n

i=1 Pi ≤
Q. It follows that we can always construct ρ to satisfy the
above condition. To prove the periodicity of x, we only need to
show that x(tQ) = x(0) because it implies x(tQ+1) = x(t1),
x(tQ+2) = x(t2), and so on. Indeed, for each task Ti, we have

xi(tQ) = xi(0) + Pi∆
?
Tai − (Q− Pi)∆

?
T bi

= xi(0) +Q∆?
T (diai − (1− di)bi)

in which diai − (1− di)bi = 0. Thus x(tQ) = x(0).
b) Choosing ∆?

T : For each step k, k = 1, 2, . . . , Q −
1, we will find the maximal time period ∆T,k > 0 so
that x(tk) is safe. Then we can simply choose ∆?

T =
min {∆T,1, . . . ,∆T,Q−1} > 0. Let βi,k be the number of
times Ti is ON from the beginning to step k. In particular, it
is defined recursively as follows: βi,0 = 0, βi,k+1 = βi,k + 1
if ρk+1 = i and βi,k+1 = βi,k if ρk+1 6= i. Then we have

xi(tk) = xi(0) + βi,k∆?
Tai − (k − βi,k)∆?

T bi

= xi(0) + ∆?
T [βi,k (ai + bi)− kbi] .

Let γi,k = βi,k (ai + bi)− kbi. We can compute the maximal
time period for xi(tk) to be safe as

∆i
T,k =


(hi − xi(0))/γi,k if γi,k > 0

(li − xi(0))/γi,k if γi,k < 0

+∞ if γi,k = 0

Because li < xi(0) < hi, ∆i
T,k > 0. Then for all 0 < ∆?

T ≤
∆i

T,k, li ≤ xi(tk) ≤ hi. With ∆T,k = mini ∆i
T,k > 0, it

is guaranteed that x(tk) is safe for all 0 < ∆?
T ≤ ∆T,k.

Therefore we choose ∆?
T = mink=1,...,Q−1 ∆T,k > 0.

VI. THE LAZY SCHEDULING ALGORITHM

We now describe the lazy scheduling algorithm which
ensures that a set of tasks always remain safe given that they
satisfy certain initial conditions. The algorithm is termed as
lazy, because switching decisions are made only if a task is
approaching either of its thresholds. Time is discretized for the
remaining paper since for practical systems time is discrete.
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Furthermore, we assume that for each task the growth rate
is strictly greater than the decay rate (i.e. ai > bi). This is
a reasonable assumption since zones within buildings tend to
heat faster than they cool. Once again, consider the normalized
state space of two tasks as shown in Figure 8. For each task
Ti, the following three zones are defined:

1) Critical zone: The Critical zone of a task Ti is the zone
in which the task must remain ON for the next time
step or else the task will violate its lower threshold in
the next iteration. The width of the Critical zone of task
Ti is given by bi∆T . A task is said to be Critical if its
state is within its Critical zone.

2) Alarming zone: The Alarming zone of a task Ti is the
zone in which keeping Ti OFF for the next iteration will
take it into its Critical zone. The width of the Alarming
zone of Ti is bi∆T , same as the Critical zone. A task
is said to be Alarming if its state is within its Alarming
zone.

3) OFF zone: For every task Ti, the OFF zone is the zone
in which the task must remain OFF for the next iteration
or else it will violate its upper threshold in the next
iteration. The width of the OFF zone of task Ti is ai∆T .

As can be seen in Figure 8, there are regions of intersections
between different zones of the tasks. A zoomed in view of
these regions is shown in Figures 9: (a) & (b). The lower left
corner of Figure 9(a) shows the region where the Critical
zones for the two tasks intersect. This is termed as the
infeasible region because if the system enters this region, then
by definition, both the tasks will have to be switched ON for
the next time step. Under the constraint that at most one task
can remain ON, this would imply that one of the tasks will

violate its lower threshold in the next time step.

Proposition 4. Under the assumption that at most one task
can remain ON, the two task system is not schedulable by
any policy if the the initial state of the system is within the
infeasible region, as defined above.

The next region of interest is the region of intersection of
the Alarming zones of the tasks. If the state of the system lies
in this region at any point in time, then by definition of an
Alarming zone, one of the tasks will become Critical in the
next time iteration as only one task will be switched ON. The
decision as to which tasks remains ON, can be based on a
random coin toss or by minimization of a cost function. The
third region of intersection is between the OFF zones for the
tasks (Figure 9(b)). If the system enters this region then both
the tasks must be switched OFF for the next iteration. There
are some other regions of intersection as well, namely the ones
between OFF zones and Critical zones. But in the algorithm,
priority of a task being Critical or Alarming is always higher
then the OFF state, so these regions are not of importance.
Given that the initial state of the system does not lie in
the infeasible region, algorithm 1 can be used to maintain
feasibility of the tasks while optimizing a cost function defined
over the set of tasks. The algorithm works by using the

Algorithm 1 Lazy Scheduling Algorithm for n tasks

1: loop
2: S ← φ {initialize switch queue as empty}
3: read the state x(t) = [x1(t)...xn(t)] of the system
4: for each Ti do
5: if Ti is in its OFF zone then
6: switch it OFF in the next iteration
7: else if Ti is Alarming or Critical then
8: S ← S ∪ {Ti} {add Ti to S}
9: end if

10: end for
11: if |S| > 0 then
12: if any task in S is Critical then
13: switch it ON in next iteration
14: else
15: pick a task from S (randomly or based on opti-

mization of some cost function) to switch ON
16: switch OFF previously ON task
17: end if
18: end if
19: end loop

Alarming zones of the tasks as barriers that prevent the tasks
from entering their Critical zones at any point in time. The
working of the algorithm for a two task system is shown in
Figure 8. Whenever the system enters the Alarming zone of a
task, the system is switched into a mode (v0, v1 or v2) such
that the Alarming task will exit its Alarming zone in the next
time iteration. This is becasue of the assumption that ai > bi.
Within the OFF zones of the tasks, there is an option to either
switch everything OFF or keep some tasks ON (which are not
in their OFF zone). In our algorithm all tasks are kept OFF
whenever any task is in its OFF zone provided no other task
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Fig. 10: Characteristics of a two-task system.

is Alarming or Critical during that time step. For scheduling
n tasks, under the constraint that at most one task can remain
ON at any time, n − 1 Alarming zones are required. The
Lazy Scheduling Algorithm is safe by construction. In the
next section, the lazy scheduling algorithm is implemented for
a set of tasks and the reduction in peak power consumption is
simulated.

VII. SIMULATION AND RESULTS

In this section it is shown how the lazy scheduling algorithm
can reduce the peak power consumption of a building by
decorrelating different systems such that no two systems
consume power at the same time. To setup the simulation the
following models are required:

1) A Task Model
2) Power Consumption Model
3) Electricity Pricing Model

The task model is the same as described earlier in Section II.
The tasks here represent heating and cooling systems. We
approximate the temperature dynamics of such systems by
linear tasks. Each system switches ON or OFF to maintain
the temperature inside a zone within the upper and lower
temperature thresholds. The state of the task in this case is
the temperature of the zone. Multiple tasks means multiple
such systems, each controlling a different zone.

The power consumption model simulates how much power
is consumed by the heating and cooling processes. It is
assumed that the heating system operates with a power of
12000 BTU/h or 3.517 kW. For simplicity, it is also assumed
that cooling occurs through heat loss and does not consume
any extra power, therefore turning the heating system OFF
is equivalent to cooling the system. In an actual building, the
cooling system would also consume some energy. In our model
that would just mean assigning a power consumption value
to the OFF state of the task as well. Further, without loss
of generality, it is assumed that each zone operates within
the temperature thresholds of 65◦F − 75◦F . The time scale
of tasks is specific to the dynamics of a system, but for the
purpose of this paper it is assumed that each discrete time
step of the algorithm (in Algorithm 1) is of 15 minute duration.
Figure 10a shows the behavior of a two task system when each
system is allowed to operate independently of the other. Each
system maintains the temperature of a zone within the tem-
perature range centered around 70◦F . When both the systems
are ON simultaneously, their power consumption aggregates,
resulting in multiple peaks in the power consumption of the
system. This can be can be seen in Figure 10b. The value of
the peak power consumed is 1.758 kW, averaged over multiple
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Fig. 11: Two-task system with the lazy scheduler.

runs of the system starting from different initial states. The
total energy consumed on average is 50.11 kWh. When we
run the same set of tasks with the lazy scheduling algorithm,
the average value of the peak power consumption reduces to
0.879 kW (Figure 11b). The total energy consumed in this
case is 45.72 kWh on average. While there is a marginal
decrease in the total energy consumption, the decrease in peak
power demand is significant. This behavior is expected since
the lazy scheduling algorithm reduces peak power demand by
ensuring that only one system consumes power at any time.
Figure 11a shows the inner workings of the lazy scheduler
in the normalized state space for the two-task system. As
described in Sections V and VI, the objective of the algorithm
is to keep the tasks bounded within the operational thresholds.
This can be seen in the figure, as the system always operates
within bounds. The algorithm that we implemented does not
use any cost function to make decisions at the boundaries of
zones. It only ensures that tasks always remain in their safe
states. The growth and decay slopes of the tasks were set such
that they adhere to Theorem 1.

As can be seen from Figures 10b and 11b, there is a
50% reduction in the peak power consumption. This is a
huge improvement, especially because electricity utility com-
panies charge commercial customers based on the peak power
consumption. At this point, it is important to discuss how
demand based pricing works in practice. If the peak power
demand is denoted by Pk and the total energy consumption
is denoted by Tot, the electricity bill is computed as Bill =
(pu × Tot) + (pd × Pk). Here pd is the demand price which
is much higher than pu, the usage price (often more than 100
times higher). To give an example, electric utility companies
in Pennsylvania, USA charge approximately 240 times higher
prices for the peak demand than for the energy usage ([1], [6]).
The high penalty for peaks in power consumption combined
with high prices means that reducing the peak power not only
saves electricity but also makes a system highly cost effective.

In Section VI, the importance of adding Alarming zones
in the system, as barriers to prevent a task from entering
its Critical zone, was emphasized. This can be verified by
simulation for a two task system without the presence of an
Alarming zone. In the absence of an Alarming zone there
always exist a set of states in the system that can drive the
system towards infeasibility (when both tasks become Critical
at the same time). One such case is shown in Figure 12a
where the system enters the infeasible region because no
Alarming zone is present. We verify through simulations that
the algorithm works for higher number of tasks. Figure 12b
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Fig. 12

shows the working of the algorithm in the normalized state
space for three tasks. It can be seen that the tasks always
remain bounded. As the number of tasks increases the value
of the peak power consumed also increases as multiple tasks
consume power at the same time. Therefore, when the lazy
scheduling algorithm decorrelates the set of tasks to run one
at a time, the corresponding reduction in peak is also higher.

VIII. RELATED WORK

Over the past few decades, majority of the work done on
real-time scheduling algorithms for single and multiprocessor
systems builds upon the seminal work of Liu and Layland in
1973 [7]. Large classes of fixed priority and dynamic deadline-
based scheduling have been proposed for CPU-centric task
scheduling. A lot of work has also been done towards energy
efficient CPU scheduling using Dynamic Voltage Scaling
(DVS) and energy aware task allocation ([8],[9] and [10]). The
integration of control and scheduling has been investigated by
[11],[12] and [13], where extensions of real-time scheduling
approaches have attempted to capture control task dynamics.
Our approach is specifically focused on energy consuming
control systems with a system-wide resource constraint and
departs from a CPU-centric view to a PSU-centric (Power
Supply Unit) resource allocation. The extension of traditional
real time scheduling algorithms like EDF and RMS, for
activation of electrical loads is used in [14] and [15] by
assuming a periodic task activation model for the physical
system. Although the periodic task model allows for the
use of traditional scheduling algorithms but the underlying
assumption that electrical loads need to switch periodically
(and not based on state feedback) makes the system overly
constrained and less flexible to changes in system dynamics.
Model predictive control (MPC) has been used for optimal
control of energy-efficient buildings [16], data centers [17],
and other energy systems. Our approach focuses on a higher
level task abstraction and though not as optimal as MPC, our
scheduling algorithms are simpler to implement and do not
require high computational power – one disadvantage of MPC.

IX. LIMITATIONS

This work is the initial step towards developing scheduling
algorithms for peak power reduction of energy consuming
systems such as buildings, datacenters etc. We have presented
analysis for systems with dynamics which can be linearly
approximated but we aim to extend the task model to in-
corporate more realistic system dynamics. Extensions to this
work will also include incorporating dynamic pricing models,
operational efficiencies and task-specific cost functions for

system-wide optimization to the task model and implementing
comprehensive scheduling policies. We are also investigating
the case of scheduling with multiple tasks (k out of n) ON at
the same time when the feasibility condition is not met.

X. CONCLUSION

A geometric formulation for the scheduling of multiple
control systems is presented. Through feasibility and schedula-
bility analysis, the proposed approach is shown to be effective
in reducing aggregate resource usage by coordinating demands
across tasks while ensuring the correct operation of all tasks.
The proposed work is an initial step in the direction of resource
and energy efficient coordination of control systems. Although
the results in this paper are presented for systems resembling
heated zones or buildings, they can be easily extended to
cooling systems (e.g. in datacenters) and more generally to
any set of energy consuming controls systems that require a
peak power constraint.
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