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A B S T R A C T   

Automated and accurate wetland identification algorithms are increasingly important for wetland conservation and environmental planning. Deep learning for 
wetland identification is an emerging field that shows promise for advancing these efforts. Deep learning is unique to traditional machine learning techniques for its 
ability to consider the spatial context of object characteristics within a landscape scene. However, applying deep learning typically requires very large datasets for 
training the algorithms, which limits their application for many environmental applications including wetland identification. Using four study sites across Virginia 
with field delineated wetlands, we provide insight into the potential for deep learning for wetland detection from limited, but typical, wetland delineation training 
data. Our proposed workflow performs a wetland semantic segmentation using DeepNets, a deep learning architecture for remote sensing data, and an input dataset 
consisting of high-resolution topographic indices and the Normalized Difference Vegetation Index. Results show that models trained and evaluated for a single site 
were able to achieve high accuracy (up to 91% recall and 56% precision) and similar accuracy can be obtained for models trained across multiple sites (up to 91% 
recall and 57% precision). Through this analysis we found that, across all sites, input data configurations taking advantage of hydrologic properties derived from 
elevation data consistently outperformed models using the elevation data directly, showing the benefit of physically-informed inputs in deep learning training for 
wetland identification. By refining the wetland identification workflow presented in this paper and collecting additional training data across landscapes, there is 
potential for deep learning algorithms to support a range wetland conservation efforts.   

1. Introduction 

Wetlands are important ecosystems that are threatened by develop-
ment, climate change, and pollution (Klemas, 2011). Wetland loss is 
both a global (Davidson, 2014) and national problem, as half of the 
wetlands of the conterminous U.S. have been lost since 1600 (Dahl et al., 
1991). In the U.S., federal regulations, such as Section 404 of the Clean 
Water Act, play an important role in wetland protection. Laws require 
environmental impact assessments prior to land development and water 
resources projects, which entails the creation of detailed wetland sur-
veys (Page and Wilcher, 1990). Conducting these surveys with the level 
of spatial resolution and accuracy needed to abide by federal regulations 
and meet the goal of avoiding adverse impact to wetlands can be 
time-consuming and costly. To support these efforts, methods for more 
rapidly identifying wetland locations are needed. Although manual 
surveys will continue to be the most accurate method to map wetlands, 
there is potential for supporting these efforts by using machine learning 
approaches, including deep learning, to identify wetland features at 
varying scales (Guo et al., 2017; Lang et al., 2013; Lang and McCarty, 
2014). 

Despite the many types of protected wetlands that exist, all wetlands 
can be identified by common features. These include the presence of 
hydrologic conditions that inundate the area, vegetation adapted for life 
in saturated soil conditions, and hydric soils (US Corps of Engineers, 
1987). Researchers have demonstrated the ability to detect these fea-
tures from multispectral imagery, radar, and Light Detection and 
Ranging (LiDAR) data (Guo et al., 2017). Multispectral imagery are the 
most commonly applied data in wetland studies (Guo et al., 2017; Kle-
mas, 2011); however, spectral variables alone may be unable to distin-
guish wetlands due to spectral confusions from reflectance and 
backscattering (Dronova, 2015; Kim et al., 2011). LiDAR data are 
well-suited to complement multispectral analyses due to its wide, and 
growing, availability and demonstrated benefit to wetland mapping 
(Guo et al., 2017; Klemas, 2011; Kloiber et al., 2015; Lang and McCarty, 
2014; Snyder and Lang, 2012). LiDAR returns can be interpolated to 
create high-resolution digital elevation models (DEMs), from which 
wetland indicators based on flow convergence and near-surface soil 
moisture can be derived (Lang et al., 2013; Lang and McCarty, 2014; 
Millard and Richardson, 2013, 2015; O’Neil et al., 2018, 2019). More-
over, researchers have shown the benefit of LiDAR DEM metrics as input 
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variables to traditional machine learning techniques, such as random 
forests, for wetland mapping and classification (e.g., Deng et al., 2017; 
Kloiber et al., 2015; Millard and Richardson, 2013; Millard and 
Richardson, 2015; O’Neil et al., 2018, 2019; Zhu and Pierskalla, 2016). 

The successful coupling of LiDAR and multispectral imagery with 
traditional machine learning techniques for wetland identification is 
well-documented. However, deep learning for remote sensing studies, 
including wetland identification, is a new application space (Ma et al., 
2017; Zhang et al., 2016) that shows promise for fulfilling the unmet 
need for wetland inventory creation. Deep learning architectures are 
modeled after the architecture of the mammal brain (Serre et al., 2007), 
where inputs are perceived and processed through multiple layers of 
abstraction. Convolutional neural networks (CNNs) (LeCun et al., 1998) 
are a representative form of deep learning that is used for visual 
recognition. CNNs utilize the spatial context of detected features to 
identify objects and classify scenes. The distinguishing element of CNN 
architectures are the convolutional layers, which convolve spatial filters 
over input images to identify patterns that are characteristic of target 
classes. Deep convolutional neural networks (DCNNs) (He et al., 2016; 
Krizhevsky et al., 2017; Simonyan and Zisserman, 2014) and fully 
convolutional neural networks (FCNs) (Long et al., 2015) are extensions 
of the CNN framework that can output dense pixel-wise classifications 
within images (i.e., semantic segmentation), where each pixel of the 
input image is assigned a class. 

Since the formalization of the concept in 2006 (Hinton et al., 2006), 
deep learning has advanced the fields of speech recognition, medical 
diagnosis, and autonomous driving applications, and has since moti-
vated new applications in environmental and water resources manage-
ment (Liu et al., 2018; Pan et al., 2019; Shen, 2018; Zhang et al., 2016). 
Researchers have shown the ability of DCNNs, FCNs, and other CNN 
extensions to delineate urban and natural landscape classes using mul-
tispectral imagery and topographic data (Audebert et al., 2017, 2018), 
multispectral imagery and LiDAR point clouds (Xu et al., 2018), and 
multispectral imagery alone (Hu et al., 2018; Kemker et al., 2018b; 
Kemker et al., 2018a; Scott et al., 2017). Few researchers have applied 
DCNNs and FCNs specifically to wetland classification. These include Liu 
et al. (2018), who applied orthoimagery and elevation information to 
deep learning models for wetland segmentation. In addition, Rezaee 
et al. (2018) used multispectral imagery in a wetland deep learning 
model, and posited that predictions would improve with the incorpo-
ration of physical information from radar or LiDAR sources. 

The typical need for massive validation sets to train deep learning 
models is a significant deterrent to environmental and water resources 
researchers (Shen, 2018; Zhang et al., 2016), as reliable training data is 
often lacking in these applications. This issue is especially prevalent for 
wetland identification that is intended to inform conservation and 
permitting efforts, where training data for computational models are 
ideally manually derived and confirmed by regulatory entities. The ef-
fects of training data limits for wetland semantic segmentation have 
been investigated by Liu et al. (2018), where comparisons were drawn 
for a single study area using DCNNs, FCNs, random forests, and support 
vector machines, with privately contracted aerial imagery and surface 
elevation information as input features. While this is an important stride 
in gaining insight into the training data needs for deep learning of 
wetlands, an analysis has yet to be done that utilizes freely-available 
data and is completed over multiple geographic regions. 

The growing research area of deep learning for remote sensing ap-
plications shows promise for advancing wetland mapping. Although 
researchers have begun to show the potential for wetland identification 
at a high resolution using deep learning approaches, research gaps 
remain. Specifically, analyses are needed to identify the deep learning 
performance potential for different geographic regions when limited to 
relatively small quantities of verification data and freely available input 
data, which are typical in practice. We aim to contribute to this field by 
presenting a novel wetland identification methodology that implements 
a basic semantic segmentation architecture and is generalizable because 

it leverages freely-available geospatial and remote sensing data. Our 
input data configuration consists of LiDAR DEM derivatives that 
describe geomorphologic and hydrologic contributors to wetland for-
mation, as well as a commonly-used vegetative index. Using four study 
sites across Virginia, we build and evaluate several wetland models to 
demonstrate the potential for wetland semantic segmentation given 
typical training data resources. Through this research, we seek to answer 
the following questions.  

i. Across geographically distinct study sites, what wetland prediction 
accuracy is achievable by building site-specific models from typically 
available amounts of wetland delineation training data?  

ii. What is the potential for a single, combined-site model trained using 
data from across geographic regions to predict wetlands at each in-
dividual site? 

2. Methodology 

2.1. Study areas 

Four study areas across Virginia, USA are used in this analysis 
(Fig. 1a). Data for each study area include the extents of wetland surveys 
and the surrounding Hydrologic Unit Code (HUC) 12 watershed (USGS, 
2019) (Fig. 1b). The HUC 12 watersheds were used as processing extents 
and surveyed areas provided the validation data, also referred to as the 
study sites. The study areas span four level-III ecoregions. As shown in 
Table 1, the sites also vary by size, land cover, and topographic char-
acteristics. Notable differences include the higher rate of development in 
sites 1 and 2, and the mild topography of Site 4. In addition, wetlands are 
much more abundant in Site 4, where the wetland to nonwetland ratio is 
0.42, compared to less than 0.1 in the other sites. Note that all surveyed 
wetland types were merged into a single wetland category prior to use as 
verification data. 

2.2. Input data 

This study used publicly available LiDAR DEMs, National Agriculture 
Imagery Program (NAIP) aerial imagery, and field-mapped wetland 
surveys. LiDAR DEMs were obtained from the Virginia Information 
Technologies Agency (VITA) (VITA, 2016) as hydro-flattened, bare--
earth DEMs. The LiDAR data used were collected and processed between 
2010 and 2015 and have horizontal resolutions ranging from 0.76 m to 
1.5 m. NAIP imagery are provided by the United Sates Department of 
Agriculture (Farm Service Agency, 2017). NAIP imagery were used to 
derive the NDVI. NAIP imagery contain four spectral bands (red, green, 
blue, and near-infrared) at a 1 m spatial resolution. Imagery used in this 
study were collected near the dates of wetland surveying, and images 
were resampled to match the resolution of the LiDAR DEMs, if necessary. 
Wetland delineations and survey limits were provided by the Virginia 
Department of Transportation (VDOT) in polygon vector format and 
served as validation data for this study. All verification wetlands were 
manually surveyed during summer months (May–August) between 2013 
and 2016 by professional wetland scientists in compliance with trans-
portation planning permitting. Wetland delineations for sites 2, 3, and 4 
were also jurisdictionally confirmed by the US Army Corps of Engineers 
(USACE). Binary wetland/nonwetland geotiffs were created from these 
data, with resolutions matching those of the site LiDAR DEMs. Visual 
analyses of Google Earth images showed that the study site landscapes 
changed minimally between LiDAR acquisition and wetland delineation 
timeframes. 

2.3. Wetland identification method 

The wetland identification method consists of three main parts: 
preprocessing, feature creation, and semantic segmentation and accu-
racy assessment (Fig. 2). Input data required include high-resolution 
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DEM data, four-band aerial imagery, and validated wetland/nonwetland 
distribution data, all in geotiff format. From these data, topographic 
indices (curvature, Topographic Wetness Index, and Cartographic 
Depth-to-Water index) and the Normalized Difference Vegetation Index 
are calculated. These input features are merged into a single four-band 
composite grid. Smaller image tiles are created from the composite 
grid and validation data, and the pairs of corresponding image tiles are 
randomly separated into training and testing datasets. Finally, dense 
pixel-wise wetland predictions are made using a deep learning archi-
tecture created for remote sensing data, DeepNets for Earth Observation 
(Audebert et al., 2018), and the accuracy of wetland predictions is 
assessed. The main outputs are geotiff wetland predictions for each 
image tile and an accuracy report for the entire validation data area. The 
method was implemented using open source Python libraries and is 
available under an MIT license (see Software Availability section). 

2.4. Preprocessing 

DEM preprocessing was necessary to create an improved land surface 
representation from which to calculate indicators of wetland geo-
morphology. First, DEM smoothing is performed, which is necessary to 
addresses microtopographic noise. Microtopographic noise is common 
in high-resolution DEMs and can be representative of either erroneous 
data or true variations in the elevation of vegetated surfaces (Jyotsna 
and Haff, 1997). DEM conditioning is then executed, which is necessary 
prior to modeling hydrologic flow paths, as it addresses topographic 
depressions (Jenson and Domingue, 1988; O’Callaghan and Mark, 
1984). Topographic depressions interfere with overland flow path 
modeling by creating discontinuities in flow paths and accumulating 
water, which negatively influences modeled watershed processes (Gri-
maldi et al., 2007; Lindsay, 2016; Lindsay and Creed, 2005). DEM 
conditioning is particularly important for hydrologic modeling from 

Fig. 1. Four study areas spanning four level III ecoregions in Virginia, USA (a). Each study area includes the wetland survey limits, referred to as study sites, and the 
encompassing HUC 12 watershed, used as the processing extent (b). Reprinted from “Effects of LiDAR DEM Smoothing and Conditioning Techniques on a 
Topography-Based Wetland Identification Model” by O’Neil et al. (2019), Water Resources Research, 55 (5), 4343–4363. Ecoregion data source: US EPA Office of 
Environmental Information. Aerial imagery data source: NAIP Digital Ortho Photo Image. 
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high-resolution DEMs, as researchers have found that sensitivity of hy-
drologic parameter extraction to conditioning technique increases 
significantly with DEM resolution (Woodrow et al., 2016). Although 
many techniques have been proposed for both DEM smoothing and 
conditioning, we apply the Perona-Malik smoothing and A* least-cost 
path conditioning. This preprocessing combination was found to 
considerably improve wetland identification for the study sites in a prior 
study (see O’Neil et al., 2019). The Perona-Malik filter (Perona and 
Malik, 1990) performs a nonlinear, anisotropic diffusion that preserves 
feature edges by penalizing smoothing across estimated feature 
boundaries (Passalacqua et al., 2010a; 2010b). Perona-Malik smoothing 
was implemented using code from the nonlinear filtering module from 
PyGeoNet, an open source software for automatic channel network 
extraction from DEMs (Passalacqua et al., 2010a; Sangireddy et al., 
2016). The A* least-cost path algorithm (Hart et al., 1968) determines 
the least-cost drainage paths through unaltered terrain and out of sinks, 
thus avoiding unnecessary modification of the input DEM (Metz et al., 
2011). The A* conditioning method was executed using the GRASS GIS 
r.watershed module (GRASS Development Team, 2017; Metz et al., 
2011). 

2.4.1. Feature creation 

2.4.1.1. Topographic features. In a prior study, we concluded that the 
curvature, Topographic Wetness Index (TWI) and Cartographic Depth- 
to-Water index (DTW) are successful topographic metrics for wetland 
identification for our study sites (O’Neil et al., 2018, 2019). 

Curvature of a surface can describe the degree of convergence and 
acceleration of flow (Moore et al., 1991), and studies have shown its 
capability to indicate saturated and channelized areas (Ågren et al., 
2014; Hogg and Todd, 2007; Kloiber et al., 2015; Millard and Richard-
son, 2015; O’Neil et al., 2018, 2019; Sangireddy et al., 2016). Here we 
use laplacian curvature, defined as the second derivative of the elevation 
grid. Laplacian curvature has been shown to favor the extraction of 
natural channels rather than artificial drainage paths, and to more 
effectively identify channels in flat, developed landscapes compared to 
alternative curvature forms (Passalacqua et al., 2012). Thus, we found 
the laplacian curvature to be most suitable for our study areas which all 
encompass corridor projects and are partially developed (O’Neil et al., 
2019). The curvature grid is created from the smoothed DEM using code 
adopted from PyGeoNet (Passalacqua et al., 2010a; “PyGeoNet,” 2019; 
Sangireddy et al., 2016). 

The ability of the TWI to indicate saturated areas is well-documented 
in the literature (Ågren et al., 2014; Lang et al., 2013; Millard and 
Richardson, 2015; Murphy et al., 2009; O’Neil et al., 2018, 2019). The 
TWI relates the potential for an area to accumulate water to its tendency 
to drain water, defined as 

TWI¼ ln
� α

tan β

�
(1)  

where α is the specific catchment area (contributing area per unit con-
tour length) and tan(β) is the local slope (Beven and Kirkby, 1979). The 
TWI was created from the smoothed, conditioned DEM using the r. 
watershed program of GRASS GIS. This module calculates the α term 
using the multiple flow direction algorithm (Holmgren, 1994) and the β 

Table 1 
Characteristics of each study site, including dominate land cover, topographic 
characteristics, and surveyed wetland distributions. Reprinted from “Effects of 
LiDAR DEM Smoothing and Conditioning Techniques on a Topography-Based 
Wetland Identification Model” by O’Neil et al. (2019), Water Resources 
Research, 55 (5), 4343–4363.   

Site 1 Site 2 Site 3 Site 4 

Dominating 
Land Covera 

Turf Grass 
(35%), 
Developed 
(22%), 
Cultivated 
(20%), 
Forested 
(19%) 

Developed 
(36%), Turf 
Grass (31%), 
Forested 
(21%) 

Forested 
(73%), 
Developed 
(9%), 
Cultivated 
(9%) 

Forested 
(66%), 
Cultivated 
(18%), NWI 
Wetland 
(9%) 

Verification 
Area (km2) 

2.8 1.6 1.8 5.6 

Min. 
Elevationb 

(m) 

209 46 101 10 

Max. 
Elevation 
(m) 

241 107 178 42 

10th 
Percentile 
Slopec (m/ 
m) 

0.02 0.01 0.04 0.01 

90th 
Percentile 
Slopec (m/ 
m) 

0.14 0.20 0.26 0.06 

Mean Slopec 

(m/m) 
0.07 0.08 0.14 0.03 

Wetland: 
Nonwetland 
(m2/m2) 

0.03 0.06 0.02 0.42 

Dominating 
Cowardin 
Wetland 
Type(s)d 

Palustrine 
Emergent 
(50%), 
Streams 
(20%)e 

Palustrine 
Forested 
(44%), 
Palustrine 
Emergent 
(33%) 

Palustrine 
Forested 
(56%), 
Streams 
(43%) 

Palustrine 
Forested 
(88%), 
Palustrine 
Shrub (9%)  

a Source: Virginia Information Technologies Agency (VITA) Land Cover clas-
sifications (https://www.vita.virginia.gov/integrated-services/vgin-geospatia 
l-services/land-cover/). 

b In sites 1, 2, and 4, verification area varied slightly due to edge effects of 
applying filtering to DEMs. 

c Slope information was calculated from LiDAR DEMs resampled to a 5 m 
resolution to reduce effect of raw DEM noise on slope information. 

d Values are approximate and according to VDOT wetland surveying reports. 
e Wetland type for remaining 30% of wetland area was not reported. 

Fig. 2. Overview of the proposed wetland identification method. Green shapes 
indicate input data, grey shapes indicate processes, yellow shapes indicate in-
termediate output, and red shapes indicate final model output. 
1Audebert, N., Le Saux, B., & Lef�evre, S. (2018). Beyond RGB: Very high res-
olution urban remote sensing with multimodal deep networks. ISPRS Journal of 
Photogrammetry and Remote Sensing, 140, 20–32. 
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term using a GRASS GIS-calculated slope. 
Researchers have demonstrated the capability of the DTW to capture 

saturated areas as well (Murphy et al., 2007, 2009; 2011; O’Neil et al., 
2018, 2019; Oltean et al., 2016; White et al., 2012). The DTW assumes 
that the likelihood for soil to be saturated increases with its proximity to 
surface water, in terms of distance and elevation (Murphy et al., 2007). 
Calculated on a per-pixel basis, the DTW is defined as 

DTW ðmÞ¼
�
X
�

dzi

dxi

�

a
�

*xp (2)  

where dz
dx is the downward slope of pixel i along the least-cost (i.e., slope) 

path to the nearest surface water pixel, a is a factor accounting for flow 
moving parallel or diagonal across pixel boundaries, and xp is the pixel 
resolution (Murphy et al., 2007). Inputs required to calculate the DTW 
include a slope grid, representing cost, and a surface water grid, repre-
senting the source from which distance is calculated. We create the 
surface water grid directly from the LiDAR DEM using PyGeoNet, which 
performs a statistical analysis of curvature and uses geodesic minimi-
zation principles to predict stream lines (Passalacqua et al., 2010a; 
Sangireddy et al., 2016). Visual analyses showed that streams created by 
PyGeoNet better aligned with aerial imagery, compared to national 
hydrography data (i.e., NHD streams) and streams generated from the 
flow initiation threshold method (Band, 1986; O’Callaghan and Mark, 
1984; Tarboton, 1991) that is commonly used. PyGeoNet was executed 
using parameters suggested for engineered landscapes (see Sangireddy 
et al., 2016), which was found to produce accurate results across all sites 
in prior wetland model development (O’Neil et al., 2019). The PyGeoNet 
streams and slope grid were used as inputs to the GRASS GIS r.cost 
module (GRASS Development Team, 2017) to create the DTW grid. 

2.4.1.2. NDVI. The NDVI is a commonly-used spectral index that re-
lates plant biomass and stress and separates wet versus dry areas (Kle-
mas, 2011; Ozesmi and Bauer, 2002). Researchers have used the NDVI as 
a wetland indicator in traditional machine learning frameworks (Cor-
coran et al., 2013; Dronova, 2015; Dronova et al., 2011; Guo et al., 2017; 
Mui et al., 2015; Rampi et al., 2014; Tian et al., 2016), as well as for 
general land cover classifications using deep learning frameworks 
(Audebert et al., 2017, 2018; Lee et al., 2019; Xu et al., 2018). The NDVI 
utilizes the red and the near-infrared bands (Carlson and Riziley, 1997), 
defined as 

NDVI¼
Infrared � Red
Infrared þ Red

(3) 

The red band indicates surface layer chlorophyll, and therefore 
surface conditions of plants, and the near-infrared band is reflected from 
the inner leaf cell structure, indicating the abundance of plant tissue 
(Klemas, 2011). To calculate the NDVI, Eq. (3) was executed using 
NumPy operations and the appropriate NAIP imagery bands. 

2.4.1.3. Image dataset creation. The image dataset creation produces 
two sets of image tiles: i) feature tiles representative of the composite 
grid of input features, and ii) validation tiles representative of ground 
truth wetland and nonwetland locations. Due to the irregular shapes of 
the field surveys, NoData pixels existed within the rectangular extent of 
the validation data. Rather than reduce our validation data to an extent 
without unverified area, NoData pixels were treated as an additional 
target landscape class. Thus, all pixels in the validation data were 
categorized as NoData (0), nonwetland (1), or wetland (2) as a first step 
in the image dataset creation process. 

To build the dataset of feature tiles, each band of the composite grid 
is rescaled to a range of 0–1, per the requirements of the DeepNets al-
gorithm. Rescaling the NDVI band was nontrivial, as these values have 
global minimum and maximum of � 1 and 1. Conversely, the range of 
values for each of the topographic features depends on the landscape 
they are calculated from, therefore it was necessary to assume global 

minimum and maximum values. The range of each topographic input 
was analyzed across the study sites, and global minimum and maximum 
values that encompassed roughly 90% of the values were chosen. Note 
that only global maximum values had to be assumed for the TWI and 
DTW, which both have global lower bounds of 0 or nearly 0. Although 
this step generalizes portions of the study areas, this occurs only where 
there are extreme topographic features that occur infrequently. In 
addition, by limiting the range applied to each topographic input feature 
rather than choosing extreme, but encompassing, values, the signifi-
cance of the relative distance between values is minimally affected. The 
minimum and maximum values used to rescale topographic features and 
the NDVI to a range of 0–1 are shown in Table 2. 

Following these steps, the categorized validation grid and scaled 
composite grid were each separated into image tiles of size 320 x 320 
pixels. We chose the 320-pixel size constraint to balance the desire to use 
image tiles large enough to depict heterogeneous landscapes and the 
need to separate the study site into enough images to sample training 
and testing tiles that were randomly dispersed. Feature and labeled 
image tiles sets were not considered for either training or testing if more 
than 80% of the area was populated with NoData pixels. 

2.4.2. Semantic segmentation model: DeepNets for Earth Observation 
Our model performs a semantic segmentation of input images, where 

each pixel of an input image is labeled as either NoData, nonwetland, or 
wetland. That is, a trained semantic segmentation model will assign a 
class prediction to each pixel in an image, however different instances of 
target class objects are not defined (i.e., instance segmentation). 

As an initial step in developing a deep learning wetland model, the 
current work is intended to demonstrate the suitability of a CNN to 
identify planning-scale wetlands in the landscape. We implemented a 
multimodal deep network, DeepNets for Earth Observation, for semantic 
segmentation classification (Audebert et al., 2017). DeepNets has 
emerged as a state-of-the-art tool for segmentation of high-resolution 
remote sensing data (Demir et al., 2018), and has been implemented 
and validated for automating segmentation of remote sensing data 
(Audebert et al., 2016, 2017, 2018). 

Although DeepNets was chosen as a vehicle to address the guiding 
research questions of this work, it is among several deep learning ar-
chitecture currently achieving competitively in semantic segmentation 
of satellite imagery. Ghosh et al. (2018) applied a Stacked U-Nets ar-
chitecture to achieve high-quality satellite imagery segmentation with 
relatively few prediction parameters. Volpi and Tuia (2016) use a CNN 
to segment very high-resolution imagery to achieve F1 scores of about 
85%. Marmanis et al. (2018) propose a downsample-upsample and 
achieve similar results. While each of these approaches are likely to 
achieve good results with wetlands segmentation, DeepNets achieved 
slightly higher results on segmentation of benchmark imagery datasets 
(Demir et al., 2018), thus it was adopted for this study. An important 
future step in progressing this research would be to perform a compar-
ative analysis of other emerging deep learning techniques for wetland 
segmentation. 

As a starting point in the development of our deep learning wetland 
model, the baseline DeepNets architecture is implemented here (Aude-
bert et al., 2018, 2019). DeepNets builds on the SegNet architecture 
(Badrinarayanan et al., 2017) and is implemented using PyTorch 
(Paszke et al., 2017). SegNet produces predictions with the same reso-
lution as the input image by using an encoder-decoder structure, making 

Table 2 
Minimum and maximum values used to scale each input feature to a range of 
0–1. Minimum and maximum values were assumed for the TWI, curvature, and 
DTW from statistical analyses.   

TWI Curvature DTW NDVI 

Global Minimum 0 � 3 0 � 1 
Global Maximum 30 3 35 1  
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it well-suited for classification of landscape objects from georeferenced 
images (Audebert et al., 2018; Badrinarayanan et al., 2017). The 
encoder portion of SegNet is based on the convolutional layers of 
VGG-16 (Simonyan and Zisserman, 2014), and consists of convolutional 
layers, batch normalization, a rectified linear unit, and max-pooling. As 
shown in the inset image (defined by Audebert et al., 2018) in Fig. 2, the 
decoder is structurally symmetrical to the encoder. Pooling layers are 
replaced with unpooling layers that relocate pixel activations from the 
smaller feature maps to corresponding indices of zero-padded upsam-
pled images. Convolution blocks are then used to densify the sparse pixel 
activations. This sequence of unpooling and convolutions is repeated 
until feature maps reach the original spatial resolution. Following this, a 
softmax layer is used to compute multinomial logistic loss. Another 
feature of the DeepNets approach is the generation of predictions at 
several resolutions, and the calculation of loss at these intermediate 
resolutions. In doing so, the DeepNets model predicts a semantic map at 
full resolution as well as smaller resolutions, which are averaged 
together to obtain a final full-resolution semantic prediction. Lastly, a 
sliding window approach is used to extract smaller patches within each 
input image, which acts as data augmentation. For further details on the 
DeepNets architecture, we direct readers to Audebert et al. (2018). 

Following procedures demonstrated by Audebert et al. (2016, 2017, 
2018), we incorporate the NDVI and elevation data into our DeepNets 
model. However, rather than using the original elevation grid as an 
input, we guide the learning of the model by deriving specific geomor-
phic and hydrologic features from the DEM as inputs. This strategy was 
chosen following a hypothesis that wetland predictions would improve 
if a deep learning model trained from explanatory variables that are 
specific to wetlands. In our implementation of DeepNets, we also applied 
class weights, which are related to the importance of correct predictions 
for a specific class when calculating the loss. We used this feature to 
account for the imbalance between the wetland and nonwetland classes 
across all sites, as well as to decrease the importance of NoData areas. 
Lastly, we allow for data augmentation in the form of mirroring images 
and flipping the orientation. Parameters for the DeepNets model incor-
porated into our wetland model workflow are given in Table 3. Note that 
these parameters were chosen as starting points to be later refined 
through additional model testing. 

2.4.3. Accuracy assessment 
In line with the intended environmental planning and permitting 

application, accuracy metrics were selected considering the higher 
importance of true positive (i.e., wetland) predictions versus true 
negative (i.e., nonwetland) predictions to wetland conservation. Model 
performance was evaluated in terms of wetland recall and wetland 
precision, calculated using the Scikit-learn Python library (Scikit-learn 
Developers, 2017). 

Recall, also known as the true positive rate, represents the percent-
age of true wetlands that were predicted, and is defined as 

Recall¼
True wetland predictions

Total true wetlands
: (4) 

Recall can be considered the priority indicator of model performance 
given the importance of the minority wetland class, a choice also sup-
ported by statistical literature (Branco et al., 2016; Chen et al., 2004; 

Sun et al., 2007). Precision is used to account for model overprediction. 
Unlike the commonly-used specificity, precision is not biased by large 
numbers of true negative instances, and therefore can be considered 
more representative for imbalanced scenarios (Branco et al., 2016; Sun 
et al., 2007). Precision represents the percentage of wetland predictions 
made that were correct, defined as 

Precision¼
True wetland predictions
Total wetland predictions

: (5) 

It should be noted that the appropriate selection of accuracy metrics 
remains an open problem not only for semantic segmentation, but for 
classification tasks in general, and additional criteria have been pro-
posed and widely used. We found recall and precision to be more suit-
able for model assessment compared to commonly used options, such as 
overall accuracy, Kappa statistic, and Matthews Correlation Coefficient 
(MCC). When using overall accuracy, detection rate of the minority class 
has a lower impact than that of the majority class (Branco et al., 2016; 
Chen et al., 2004), misrepresenting a wetland model predicting all 
nonwetland instances as very accurate. Moreover, the Kappa statistic is 
biased by sample size, and can increase as the wetlands to nonwetlands 
ratio increases, even if wetland recall decreases (Ali et al., 2014; Byrt 
et al., 1993). Both overall accuracy and the Kappa statistics have been 
omitted from wetland classification studies for these reasons (Baig et al., 
2014; Zhu and Pierskalla, 2016). Although the MCC metric has been 
shown to be suitable for imbalanced scenarios (e.g., Boughorbel et al., 
2017), its takes into account the number of true negative samples. 

2.5. Experimental setup 

2.5.1. Addressing research question 1: creating site-specific models 
Experiments 1 and 2 (Fig. 3A) were designed to offer insight into 

potential wetland accuracy given varying sizes of reliable training sets, 
evaluated over four geographic regions. In Experiment 1, we created 
models that sample training images from the area to be mapped (i.e., 
site-specific models). For each site, 70% of eligible image sets were 
randomly selected, producing the maximum training set size available, 
which varied based on site size (Table 4). To compare how models of 
different ecoregions perform given the same training resources, site- 
specific models were created and evaluated at each threshold of 
training set size. Experiment 2 applied the site-specific models created 
through Experiment 1 (those using the maximum training set size) to 
predict wetlands in the other sites. Thus, Experiment 2 represents the 
scenario where a pretrained wetland model is applied for a new area for 
which training data is unavailable. 

2.5.2. Addressing research question 2: creating combined-site models 
Experiments 3 and 4 (Fig. 3B) aim to evaluate the potential for 

improving wetland accuracy by incorporating training data from 
different geographic regions into a single model. In Experiment 3, a 
wetland model is trained using the largest training sets available from 
each site (i.e., “general model”). In Experiment 4, a model is created 
using the maximum training data from two sites within the same ecor-
egion: Site 2 and Site 3 (i.e., “ecoregion model”). Both experiments aim 
to gain insight into the change in wetland predictions when the model 
learns wetland characteristics that exist for a range of landscapes. 

3. Results 

3.1. Performance of site-specific models 

For Experiment 1, site-specific models were built using training data 
quantities ranging from 9 to 77 images, depending on validation data 
extents (Fig. 4). The resulting 10 sets of wetland predictions were 
evaluated for the testing area complementing the training data quantity 
used. Results show that the best performing models for each site were 
those trained using the maximum training set size available, equal to 

Table 3 
Parameters for the DeepNets implementation used in all performed experiments.  

Image tile size (# pixels) 320, 320 
Sliding window size (# pixels) 64, 64 
Sliding window stride (# pixels) 8 
Base learning rate 0.01 
Momentum 0.9 
Weight decay 0.005 
Training epochs 100 
Class weights [NoData, Nonwetland, Wetland] [0.02, 0.08, 0.9]  
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70% of the validation area. Conversely, the lowest performing models 
across all sites occurred when using the fewest training data, nine im-
ages. The Site 4 model trained with 77 images achieved the highest 
wetland recall and precision across all site models. The Site 4 model also 
outperformed other sites when limited to the same number of training 
images (Fig. 4). The overall lowest performing model was built for Site 2, 
which also had the smallest training dataset available, only nine images. 

While the improvements in prediction accuracy as training data 
increased were expected, intermediate changes in accuracy were 
inconsistent. For Site 3, recall increased considerably (46%–85%) and 
precision increased slightly (17%–20%) when increasing training im-
ages from 9 to 28. However, changes in model accuracy were less sig-
nificant for Site 1, where the most notable accuracy improvement 
occurred when increasing training data from 28 to 31 images, which 

increased recall from 70% to 81% and precision from 22% to 25%. 
Models built for Site 4 performed consistently, maintaining high per-
formance regardless of training set sizes ranging from 9 to 77 images. 
For Site 4, recall only varied between 84% and 91% and precision be-
tween 50% and 56%. It was unexpected that Site 4 did not improve more 
notably when increasing the training dataset from 31 to 77 images, as 

Fig. 3. Methodology followed for the four experiments designed to address the study research questions.  

Table 4 
Maximum number of training images available per site when randomly 
sampling 70% of the eligible validated area. Each labeled image used 
for training has a resolution of 320 x 320 pixels.  

Site Maximum training sets size (# images) 

Site 1 31 
Site 2 9 
Site 3 28 
Site 4 77  

Fig. 4. Wetland mapping accuracy resulting from Experiment 1, where site- 
specific models were created using several training data sizes depending on 
site availability. 
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this was the largest increase in training set studied. This may be due to 
the fact Site 4 has the most balanced wetland to non-wetland areas, so 
fewer training images are needed to create an accurate model. 

3.2. Using site-specific models to predict wetlands in other sites 

Experiment 2 resulted in an additional 12 sets of results, where the 
best performing site-specific models (i.e., those trained with the 
maximum training data set size) were used to predict wetlands in the 
other sites. The evaluation of these trials represents wetland prediction 
accuracy for the entirety of the site validation area, and the results 
achieved by applying the site-specific models for their own areas are also 
shown for reference (Fig. 5). In most cases, utilizing training information 
from a different area, even if this represented a greater quantity of data, 
did not improve predictions compared to those resulting from a model 
trained for its own area. Site 2 was the exception for this trend, as both 
recall and precision improved when using any of the models built for 
other sites, compared to using the Site 2 model. Moreover, the Site 2 
model produced more accurate wetland predictions when applied to the 
other sites, compared to its own testing area. Although the predictions 
for others sites resulting from the Site 2 model were still among the 
lowest accuracies per site, this suggests there may be topographic or 
spectral confusion between Site 2 training and testing data. Also, there 
was an unexpected increase in precision when applying the Site 1 model 
versus the Site 4 model for Site 4 predictions. However, since both 
wetland precision and wetland recall should be considered when sum-
marizing model performance, the significantly greater recall achieved 
by the Site 4 model leads us to conclude that the Site 4 model out-
performed the Site 1 model here. Lastly, the Site 4 model resulted in the 
highest recall scores and among the lowest precision scores across all 
trials for sites 1, 2, and 3. This reflects a tendency of the Site 4 model to 
overpredict wetlands in other sites. This may be because Site 4 includes 
large, areal wetlands common in the coastal plain given its low relief 
topography, but uncommon in the other three sites that are outside of 
the coastal plain. 

3.3. Performance of combined-site models 

Experiment 3 resulted in the general model, trained with the 
maximum available training images from each site. When applying the 
general model to Site 1 testing areas, recall increased from to 81%–89% 
and precision decreased from 25% to 18%, relative to the best 

performing Site 1 model (Fig. 6). For Site 2 testing areas, the general 
model considerably improved wetland recall (28%–40%) and minimally 
changed precision (3%–2%), compared to the best performing site- 
specific model (Fig. 6). The general model produced worse predictions 
than the site-specific model for Site 3, decreasing recall from 85% to 
73% and precision from 20% to 15%. The general model performed 
nearly the same for Site 4 compared to the site-specific model, where 
recall remained high at 91% and precision increased by a small margin 
from 56% to 57%. These results suggest that a general model trained 
with data collected across all sites would not be a suitable method for 
wetland prediction, at least with the current methodology and data 
availability. 

Experiment 4 resulted in the ecoregion model, trained with the 
maximum available training images from sites 2 and 3, which share the 
Northern Piedmont ecoregion. This experiment tested the idea that a 
general wetland classification may be possible, but only within a single 
ecoregion and not across ecoregions as was attempted in Experiment 3. 
For Site 2, the ecoregion model produced worse predictions than the 
general model and the site-specific model, with recall decreasing to 21% 
and precision remaining nearly the same at 2% (Fig. 6). In contrast, the 
ecoregion model improved wetland recall and precision for Site 3 (77% 

Fig. 5. Wetland mapping accuracy resulting from Experiment 2, where the best performing site-specific models were used to predict wetlands in other sites.  

Fig. 6. Wetland mapping accuracy resulting from Experiment 3, which used 
training data from all sites to create a general model, and Experiment 4 which 
used training data only from sites within the same ecoregion (sites 2 and 3) to 
create an ecoregion model. 
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and 22%, respectively) compared to the general model, however this 
was not an improvement from the Site 3-specific model (Fig. 6). This 
suggests that an ecoregion-specific classification model may be useful, 
but not more so than a site-specific model given the data available here. 

4. Discussion 

4.1. Potential for site-specific models 

We found that site-specific models improved as more training data 
was sampled from the area to be mapped, with the best models created 
from the maximum training datasets studied: 70% of the validation area. 
However, performance did not improve consistently for sites at the in-
termediate training data thresholds. This outcome exemplifies that 
model improvement is an issue of not only increasing the quantity of 
training data, but also the quality. The performance inconsistencies may 
be due to unequal wetland distributions in each training image. For 
example, the training images introduced for Site 1 when increasing the 
training data threshold from 9 to 28 images, may have provided very 
few wetland areas if the random selection included scenes with few or 

only small wetlands. In addition, it is possible that the random nature of 
the training image set creation led to the introduction of some scenes 
with conflicting wetland/nonwetland signatures. As there is a benefit to 
identifying a training area threshold that begins to improve model 
performance across different sites, future work should include repeating 
this experiment with quality-controlled training data images and 
thresholds. Evaluating model performance across sites with training 
image thresholds at even increments of wetland and nonwetland area 
would result in more conclusive insights as to the changes in model 
performance as more training data becomes available. This being said, 
the overall improvements across the sites as training data increased to 
the maximum available set are likely due to the ability of the model to 
learn a wider range of wetland characteristics that exist in the additional 
landscape scenes. 

Fig. 7 demonstrates the changes in wetland predictions as a result of 
increasing training data from nine training images (column A) to the 
maximum training images per site (column B). For sites 1, 3, and 4, 
increased training data reduced wetland overprediction surrounding the 
extents of ground truth wetlands, most notably for narrow wetland 
segments in sites 1 and 3. In addition, wetland predictions for these sites 

Fig. 7. Comparison of wetland predictions produced by site-specific models created from (column A) the smallest training dataset and (column B) the largest training 
dataset available for the site. Also shown are wetland predictions produced by models trained only with the largest training dataset for Site 4 (column C). 
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encompassed more of the true wetland area, most apparent for Site 4, 
where predictions densified for a relatively large wetland as a result of 
increasing the training data. Fig. 7 also exemplifies the poor perfor-
mance of the Site 2 model. Although the Site 2 model predicts wetlands 
as small, linear features that are representative of the nature of ground 
truth wetlands in the area, the predictions are relatively sparse and 
incorrect. By visually examining the input features and testing data for 
Site 2, we found that validation wetlands existed underneath dense tree 
canopy along a road corridor. Topographic metrics in this area indicated 
values corresponding to wetness within the true wetland boundaries, 
however, the NDVI showed constant values for most of the forested area. 
The lack of distinction between values by the NDVI is likely due to the 
source imagery, the NAIP, which is collected during the growing season, 
with leaf-on conditions and is therefore affected by tree canopy. More-
over, the better performance for Site 4, even when using few training 
data, suggests that this landscape was particularly well-suited to the 
deep learning approach. This may be due to the large distribution of 
wetlands in Site 4, leading to a higher quantity of wetlands in the entire 
training data set as well as more significant presence of wetlands in each 
training image. 

Fig. 7 also shows model predictions when using the Site 4-specific 
model. The Site 4 model produced predictions with the highest recall 
scores of all model trials for sites 1, 2, and 3. As indicated by the in-
creases in recall, predictions resulting from the Site 4 more densely 
encompassed the ground truth wetlands (Fig. 7, column C), relative to 
results for the site-specific models (Fig. 7, columns A and B). Attributing 
to the lower precision scores also produced by the Site 4 model, wetland 
overprediction is apparent in the scenes for site 1, 2, and 3 (Fig. 7, 
column C). The wetland predictions for these sites are also made at a 
coarse resolution within image tile extents, evident by the rectangular 
edges of wetland predictions in sites 1 and 3 (Fig. 7, column C). In 
addition, a segment of a narrow wetland feature is omitted for Site 3 
when applying the model trained for Site 4. Overall, these shortcomings 
demonstrate the potential for bias to a specific landscape and wetland 
type in site-specific models, which may lead to decreased accuracies 
when applied to different landscapes. This may be overcome by 
changing the classification strategy away from a simple wetland/non- 
wetland classification to one that classifies different wetland types, 
although this strategy was not explored through this research. The in-
crease in recall scores when using the Site 4 model, and the 

Fig. 8. Comparison of wetland predictions resulting by (column A) the best performing site-specific models (i.e., those trained on 70% of the validation area), 
(column B) the general model, and (column C) the ecoregion model. 
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concentration of wetland overprediction occurring in the adjacent and 
surrounding areas of the ground truth wetlands, suggests the noted 
shortcomings may also be addressed by using a more balanced sampling 
of different wetland types. 

4.2. Potential for combined-site models 

Compared to the site-specific models, the general model mostly 
resulted in more wetland overprediction, but in some cases increased 
coverage of ground truth wetlands (Fig. 8, column B). This trend is likely 
due to the bias of the general model to favor wetland types present in the 
Site 4 landscape, as more than half of all the training images used were 
from Site 4. While the general model results do not present an 
improvement from the site-specific models, there are improvements 
compared to wetland predictions resulting from a model trained only on 
Site 4 (see Fig. 7, column C). By supplementing the Site 4 training data 
with wetland information from other landscapes, we see finer, more 
precise wetland prediction boundaries (Fig. 8, Site 1 B and Site 3 B). For 
Site 2, the general model produced a greater overall amount of wetland 
predictions compared to the site-specific model, but predictions were 
inaccurate (Fig. 8, column A vs. column B). However, the quantity of 
erroneous wetland predictions for Site 2 was greater when using the Site 
4 model versus the general model. It was expected that predictions for 
Site 4 would be mostly unchanged between the site-specific model and 
the general model, due to the significant presence of Site 4 training data. 
However, the weak training data influence from other sites did slightly 
improve precision for Site 4, demonstrated by finer-scale edges of 
wetland predictions (Fig. 8 Site 4 A vs. Site 4 B). 

The ecoregion model explored the potential for creating combined- 
site models that are specific to certain landscape characteristics by 
including training data only from within the same ecoregion (i.e., sites 2 
and 3). Fewer wetland predictions were made overall for Site 2 using the 
ecoregion model (Fig. 8, column C), which considerably reduced recall 
compared to the general model, but also resulted in sparser correct 
wetland predictions than the Site 2-specific model. For Site 3, the 
ecoregion model improved both precision and recall compared to the 
general model, but results were still less accurate than the site-specific 
model. Compared to general model predictions, the ecoregion model 
regained correct wetland predictions for narrow, riparian wetland fea-
tures for Site 3 (Fig. 8, column C). The ecoregion model also reduced 
wetland overprediction compared to the general and site-specific 
models in the scenes shown in Fig. 8, representative of the higher pre-
cision produced by the ecoregion model (22% vs. 20% by the site- 
specific model and 15% by the general model). However, wetland pre-
dictions resulting from the ecoregion model encompassed less ground 
truth wetland area overall relative to the Site 3-specific model. 

Although neither approach for creating a combined-site model was 
able to outperform site-specific models, results show potential to refine 
and improve these methods. We found that the relatively poor perfor-
mances of the general and ecoregion models were not likely caused by 
the unequal sampling of training data from the different geographic 
study areas. To investigate this potential source of error, the general 
model and the ecoregion model were recreated by limiting training data 
from sites to just nine images each, balancing the representation from 
each site. For all sites, the general model built with equal, but limited 
training data performed worse than the proposed general model. For 
Site 3, the ecoregion model built with limited training data performed 
considerably worse, where recall decreased from 77% to 30% and pre-
cision improved slightly from 15% to 17%. For Site 2, however, the 
limited ecoregion model improved results slightly (recall increasing 
from 21 to 27% and precision remaining at 2%), but still not to an 
acceptable level of accuracy. Thus, improving the combined-site model 
approach may not just be a matter of equally sampling different land-
scapes, but also balancing an adequate amount of training data from 
different landscapes. Lastly, the lack of consistent improvement to Site 2 
and Site 3 predictions when applying the ecoregion model suggests it 

would be beneficial to consider additional landscape similarities when 
building combined-site models. Landscape characteristics to consider 
may be those that affect the distributions of topographic inputs, such as 
influence of built environment drainage and land cover. 

4.3. Utility of the proposed input data configuration 

This study explored an input data configuration unique to most deep 
learning applications where topographic derivatives of the input 
“image” (i.e., LiDAR DEM) are predetermined and specific to the target 
object (i.e., wetlands). The hypothesis was that predetermined elevation 
derivatives (TWI, DTW, and curvature) would improve wetland classi-
fication training by including hydrologic information, compared to 
training directly from the elevation data. To evaluate the efficacy of this 
method, we compared the accuracy achieved using our novel input data 
configuration versus two-band images composed of the LiDAR DEM and 
the NDVI, which is more representative of the common input data 
approach taken (e.g., Audebert et al., 2017, 2018; Latifovic et al., 2018; 
Liu et al., 2018; Silburt et al., 2018; Xu et al., 2018). The LiDAR DEMs 
used to create the two-band images were smoothed and hydrologically 
corrected, as suggested by O’Neil et al. (2019), and 70% of the areas 
were used for training for both model sets. 

For sites 1, 2, and 3, the proposed input data configuration out-
performed the typical approach in terms of both recall and precision. 
Wetlands predicted from only the DEM and NDVI for Site 1 achieved 
lower recall (73% vs. 81%) and precision (21% vs. 25%) compared to 
the models using the derived topographic indices and the NDVI. This 
suggests that combining physical understanding of the system, in this 
case hydrological and ecological characteristics of wetlands, helps to 
guide the deep learning algorithm so that it is able to obtain increased 
predictive skill. For Site 2, predictions learned from the DEM and NDVI 
encompassed only 12% of the ground truth wetlands with near 0% 
precision, compared to 28% recall and 3% precision achieved by the 
proposed approach. Wetland predictions for Site 3 lost considerable 
accuracy with the typical input data approach, producing 24% recall 
and 9% precision, whereas our approach resulted in 85% recall and 20% 
precision. For Site 4, this comparison showed that the model that 
learned from the DEM and NDVI alone produced a higher recall (96% vs. 
91%) and lower precision (49% vs. 56%). While this indicates that more 
ground truth wetlands were detected using the typical approach, it is 
slightly outweighed by the loss in wetland precision. Considering the 
consistent improvement to the other three sites, the lack of significant 
change in Site 4 when applying only the DEM and NDVI may suggest 
that the deep learning model relies more heavily on the vegetative 
characteristics provided by the NDVI than the geomorphologic and 
hydrologic information that the elevation data offers. This is likely due 
to the fact that Site 4 had the least topographic relief, being within the 
coastal plain. Results for Site 4 using a random forest classification (see 
O’Neil et al., 2019) also support this idea, showing that the topographic 
input variables were insufficient for describing wetland characteristics 
unless preprocessing methods were calibrated specifically to the area. 
Thus, it is logical that wetlands in Site 4 are better described by vege-
tative characteristics than topography, explaining the lack of change in 
predictions when replacing the topographic inputs with the DEM and 
leaving the NDVI input unchanged. 

4.4. Comparison of deep learning to a random forest implementation 

To examine the potential for deep learning to advance the more 
commonly used random forest approach for wetland classification (e.g., 
O’Neil et al., 2019), we compared the performance of the site-specific 
deep learning models to a random forest classification with the same 
set of input variables. The random forest implementation follows the 
approach of O’Neil et al. (2019), but with the addition of the NDVI to the 
original set of inputs: the TWI, curvature, and DTW. The training sam-
pling used in the O’Neil et al. (2019) study was maintained, where 
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training data consists of randomly dispersed pixels that encompass only 
15% of the validated wetland area and up to 8% of the validated non-
wetland area. However, accuracy assessments for both the deep learning 
and random forest models were limited to the extents of the testing 
image tiles that correspond to the deep learning approach. 

Compared to the Site 1 deep learning model, the random forest 
classification resulted in an improvement in recall from 81% to 91%, but 
a decrease in precision from 25% to 19%. For Site 2, Random Forest 
improved recall considerably, from 28% to 78%, and slightly improved 
precision from 3% to 5%. The Site 3 random forest model produced no 
change in recall (85%) and a slight decrease in precision (20% vs. 18%), 
compared to deep learning. Finally, the Site 4 random forest model 
considerably decreased recall from 91% to 70% and increased precision 
from 56% to 64%, relative to the deep learning model. With the 
exception of Site 2, these findings show that deep learning was able to 
perform similarly to random forests (e.g., Site 1 and Site 3), and argu-
ably better in some cases (e.g., Site 4). The poor performance in Site 2 
further supports that the deep learning model was not sufficiently able to 
learn characteristics of wetland features that were very small and sparse 
relative to the landscape scenes in each training image. Similarly, the 
Site 4 results again support the idea that deep learning is better suited to 
detecting wetlands where they are areal and large relative to the land-
scape scene. In addition, an evaluation of the entire testing areas cor-
responding to the random forest models shows that the inclusion of the 
NDVI as a wetland indicator improves on the O’Neil et al. (2019) 
approach. Compared to the random forest models using only the topo-
graphic inputs, the addition of the NDVI improved wetland recall and 
precision in Site 1 (81% vs. 88% and 19% vs. 24%), Site 2 (82% vs. 88% 
and 16% vs. 22%), Site 3 (83% vs. 86% and 22% vs. 25%), and Site 4 
(58% vs. 68% and 47% vs. 54%). 

Overall, it is important to note that the random forest models were 
able to achieve these accuracies by sampling much less training data 
than was required for deep learning models. However, this result also 
shows that deep learning models can approach the same accuracies 
using training data resources that are considerably smaller relative to 
most deep learning applications. In addition, the similar performance of 
deep learning to random forests in three of the study sites supports 
findings by other researchers that state deep learning can improve 
landscape segmentation accuracy over traditional machine learning, 
such as support vector machine, maximum likelihood classification, and 
random forests, given enough training data (e.g., Hu et al., 2018; Lat-
ifovic et al., 2018; Liu et al., 2018; Mahdianpari et al., 2018). 

4.5. Limitations 

Limitations of this approach could be addressed through additional 
research. For example, incorporating Class Activation Mapping (CAM) 
(Zhou et al., 2016), which highlights scene elements that are most 
influential during classifications, would offer further insight into model 
learning. By utilizing CAM, model refinements could be made by 
quantifying the impact of the input data and identifying sources of error. 
Considering additional remote sensing data may also improve model 
performance. These may include LiDAR point clouds, which researchers 
have incorporated into 3-dimensional CNNs for wetland identification 
(e.g., Xu et al., 2018). Also, incorporating radar data may reduce errors 
where the NDVI is affected by tree canopy, as it is able to penetrate this 
layer and provide vegetation density and inundation information for 
wetland mapping (Allen et al., 2013; Behnamian et al., 2017; Corcoran 
et al., 2013; Kloiber et al., 2015; Millard and Richardson, 2013). Also on 
this point, the contribution of each input data source throughout the 
DeepNets workflow can be handled in a more sophisticated way. This 
was demonstrated by Audebert et al. (2018) who proposed novel data 
fusing methods for elevation data and the NDVI within the DeepNets 
workflow to improve land cover classifications. 

Additional training information that consists of accurately delin-
eated wetlands from across different ecoregions should improve the 

deep learning classification results. Also, additional training data would 
make it possible to train models for specific wetland types rather than a 
simple, binary wetland/nonwetland classification. These training data 
are likely available from state and federal agencies given the need for 
wetland assessments under the Clean Water Act, but are not collected 
into a single, standardized repository. Future work could focus on 
building such a training and testing repository for wetland classification. 
Furthermore, to more efficiently make use of any amount of reliable 
training information available, applying more sophisticated data 
augmentation techniques may improve wetland predictions, as 
demonstrated by Stivaktakis et al. (2019). 

Refinements to the current approach should also include more robust 
accuracy assessments. The current accuracy metrics are transparent and 
represent the two factors that are needed for reliable implementation: 
coverage of ground truth wetlands and limited overprediction. Howev-
er, a single accuracy metric that encompasses both of these factors while 
also acknowledging the significantly higher importance of wetland 
recall would improve the interpretation of model results. Model evalu-
ation improvements should also take into account the diffuse boundaries 
of wetlands which may fluctuate seasonally by penalizing over-
prediction less if it occurs adjacent to or surrounding defined ground 
truth wetland extents. Lastly, this study did not test the effect of tuning 
the DeepNets parameters. Among other parameter adjustments, future 
work should explore the benefit of adjusting window sizes based on 
target wetland size and the accuracy tradeoffs when training the model 
for more epochs. 

5. Conclusions 

We explore a wetland identification workflow that implements a 
basic semantic segmentation architecture and an input data configura-
tion that consists of the NDVI and LiDAR DEM-derived indicators of 
wetland hydrology and geomorphology. The workflow was trained and 
evaluated using available data resources from four geographic regions of 
Virginia. From this work, we draw the following conclusions.  

i. Site-specific deep learning models created from relatively small 
training datasets can achieve accurate results. For three of the 
four study sites, wetland recall ranged from 81 to 91% and pre-
cision ranged from 20 to 56%, when training models with 70% of 
site area and testing on the remaining 30% of the site area. 

ii. Site-specific models were more successful for areas where wet-
lands are abundant and occupy a significant portion of training 
images. For a site with large, areal wetlands that were almost 
evenly balanced with nonwetland areas, high accuracy was ach-
ieved with 7.5 km2 (70%) of training area (91% recall and 56% 
precision). Using a much smaller training area, 0.4 km2 (10% of 
the study area), still resulted in a fairly accurate model (84% 
recall and 50% precision).  

iii. In most cases, accuracy decreased when using models trained for 
another site. However, the site-specific model trained with the 
largest area studied (7.5 km2) increased wetland recall in all 
other sites. Although model predictions were imprecise and 
showed a bias towards the types of wetlands for which it was 
trained (i.e., large, areal wetlands), the correct localization of 
wetland predictions suggests there is potential for this approach if 
models are trained with sufficient data and for areas with similar 
landscapes.  

iv. Combined-site models can produce accurate wetland predictions, 
but training data contributions from the target landscapes should 
be balanced. The general model revealed the potential for bias 
towards landscape characteristics more heavily represented in 
the training data. However, the influence of less represented sites 
was still apparent, as wetland predictions were more inclusive of 
different wetland types compared to a model created without 
training data from these sites. 
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v. Shared ecoregion alone may not offer sufficient landscape simi-
larities to improve the training sampling approach for combined- 
site models. The ecoregion model showed accuracy improve-
ments from the general model for one site. However, wetland 
predictions for the other site were less accurate. Future work 
should explore the benefit of creating combined-site models from 
areas that share additional characteristics that would affect the 
distributions of the topographic derivatives, such as level of 
development, land cover, and topography. 

vi. The proposed input data configuration improves wetland iden-
tification compared to a more typical approach of using the NDVI 
and the LiDAR DEM alone. By predetermining the derivatives of 
the DEM that are wetland indicators based on physical under-
standing of hydrology and wetland formation, rather than 
allowing the deep learning network to determine these through 
convolutions on raw data, wetland predictions were more accu-
rate in three sites. This speaks to the benefit and power of 
combining physical understanding along with machine and deep 
learning algorithms for improved predictive skill. For the 
remaining site, accuracy was nearly unchanged between the two 
approaches. However, analyses show that this is likely due to the 
greater importance of the NDVI for identifying wetlands in the 
topographically mild landscape.  

vii. Compared to a random forest approach, the best performing 
models produced comparable accuracy, using more training data 
than required for random forest, but still significantly less than 
what is typical in most deep learning applications. 

Our results demonstrate the potential for deep learning to not only 
improve accuracy compared to traditional machine learning algorithms, 
but also provide flexible models that are accurate for a range of land-
scapes. Paramount to achieving this will be larger efforts within the 
research community to gather reliable training data and pretrained 
models stored as open source repositories, as has been done for estab-
lished deep learning fields (e.g., Lecun, 1999; Lin et al., 2014). The 
wetland models created through this research may offer a starting point 
for creating a repository open to other researchers. By refining this 
implementation of the deep learning wetland workflow and further 
training the created models, there is potential for deep learning to 
support a range of wetland conservation efforts by producing accurate 
wetland inventories across many landscapes. 

Software and data availability 

Software created through this research along with documentation is 
available under an MIT license from https://github.com/uva-hydroinf 
ormatics/wetland_id. All input data required to run the model are 
publicly available through federal and state data providers. Wetland 
delineation datasets used for training and evaluation was made avail-
able to the researchers through a relationship with the Virginia 
Department of Transportation. To retrain the model for a new landscape, 
similar wetland delineation data for that area may be required. 
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