
DeepRacing: Parameterized Trajectories
for Autonomous Racing

Trent Weiss
Department of Computer Science

University of Virginia
ttw2xk@virginia.edu

Madhur Behl
Department of Computer Science

University of Virginia
madhur.behl@virginia.edu

May 12, 2020

Abstract

We consider the challenging problem of high speed autonomous racing in a realistic Formula
One environment. DeepRacing is a novel end-to-end framework, and a virtual testbed for
training and evaluating algorithms for autonomous racing. The virtual testbed is implemented
using the realistic F1 series of video games, developed by Codemasters c©, which many Formula
One drivers use for training. This virtual testbed is released under an open-source license
both as a standalone C++ API and as a binding to the popular Robot Operating System 2
(ROS2) framework. This open-source API allows anyone to use the high fidelity physics and
photo-realistic capabilities of the F1 game as a simulator, and without hacking any game engine
code. We use this framework to evaluate several neural network methodologies for autonomous
racing. Specifically, we consider several fully end-to-end models that directly predict steering
and acceleration commands for an autonomous race car as well as a model that predicts a
list of waypoints to follow in the car’s local coordinate system, with the task of selecting a
steering/throttle angle left to a classical control algorithm. We also present a novel method of
autonomous racing by training a deep neural network to predict a parameterized representation
of a trajectory rather than a list of waypoints. We evaluate these models performance in our
open-source simulator and show that trajectory prediction far outperforms end-to-end driving.
Additionally, we show that open-loop performance for an end-to-end model, i.e. root-mean-
square error for a model’s predicted control values, does not necessarily correlate with increased
driving performance in the closed-loop sense, i.e. actual ability to race around a track. Finally,
we show that our proposed model of parameterized trajectory prediction outperforms both
end-to-end control and waypoint prediction.

1 Introduction

Vision-based solutions are believed to be a promising direction for autonomous driving due to their
low sensor cost, and recent developments in deep learning. End-to-end models for autonomous
driving have attracted much research interest [Santana and Hotz, 2016, Janai et al., 2017, Xu et al.,
2016a], because they eliminate the tedious process of feature engineering. Algorithms for end-to-end
driving are being trained and evaluated in both simulation [Perot et al., 2017, Chen et al., 2015].
These methods show promise and in some cases are implemented on real vehicles [Bojarski et al.,
2016]. However, there is room for significant progress as these studies primarily use simulators with
simplified graphics and physics [Wymann et al., 2000, Brown et al., 2018] and so the obtained
driving results lack realism. Additionally, there is little work showing how these methods will
perform under “edge” or “corner” cases. That is, highly unusual or unexpected scenarios where an
autonomous agent must make a decision in an environment it has either not seen or wasn’t specifically
programmed to handle. These cases are the cause of many failures in autonomous driving agents [tes,
2018, Wakabayashi]. There is an unfilled need to directly address these edge cases with autonomy

1

ar
X

iv
:2

00
5.

05
17

8v
1

 [
cs

.R
O

]
 6

 M
ay

 2
02

0

that can be agile and is capable of handling these unexpected edge cases safely. As a first step toward
agile autonomy, we consider the project of high-speed autonomous racing, specifically Formula One,
as a proxy for agile behavior. This approach is not unprecedented. In the early 20th century, a
time of great consternation about giving up horses in favor of motorcars, Ford Motor Company used
motorsport racing as a means of demonstrating to the public that it’s products were safe for everyday
users. Additionally, many of the now-standard features of commercially available automobiles were
conceived as innovations in motorsport racing.

Demonstrating high-speed autonomous racing can be considered as a grand challenge for vision
based end-to-end models. Autonomous racing can be considered an extreme version of the self-
driving car problem, making progress here has the potential to enable breakthroughs in agile and
safe autonomy. To succeed at racing, an autonomous vehicle is required to perform both precise
steering and throttle maneuvers in a physically-complex, uncertain environment, and by executing
a series of high-frequency decisions. Autonomous racing is also highly likely to become a futuristic
motorsport featuring a head-to-head complex battle of algorithms Scacchi [2018]. For instance,
Roborace [rob] is the Formula E’s sister series, which will feature fully autonomous race cars in
the near future. Autonomous racing competitions, such as F1/10 racing and Autonomous Formula
SAE [Koppula, 2017] are, both figuratively and literally, getting a lot of traction and becoming
proving grounds for testing perception, planing, and control algorithms at high speeds.

We present DeepRacing, a novel end-to-end framework for training and evaluating algorithms
specifically for autonomous racing. DeepRacing uses the Formula One (F1) Codemasters game as a
virtual testbed. This game is highly realistic - both in physics and graphics - and is used by many
real world F1 drivers for training. Our DeepRacing C++ API enables easy generation of training
data under a variety of racing environments, without the cost and risk of a physical racecar, and
racetrack. This allows anyone to use the high fidelity physics and photo-realistic capabilities of the
F1 game as a simulator, and without hacking any game engine code. The DeepRacing framework is
open-source https://github.com/linklab-uva/deepracing.

In addition we present AdmiralNet - a novel neural network architecture for predicting a parame-
terized trajectory (specifically, Bézier Curves) for the autonomous agent to follow. We conduct a case
study of this model against several other autonomous racing approaches. Our evaluation demon-
strates the ability to train and test end-to-end autonomous racing algorithms using this highly
photo-realistic video game environment.

1.1 Contributions of this paper

The paper has the following contributions:
1. This is the first paper to demonstrate and enable the use of a highly photo-realistic Formula

1 Codemasters c© game, with a high fidelity physics engine, as a test-bed for developing au-
tonomous racing algorithms, and testing them in a closed-loop manner.

2. We implement and evaluate a deep neural network (DNN) called AdmiralNet. AdmiralNet uses
a novel combination of Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Bézier Curves to autonomously race.

3. We compare AdmiralNet with several other approaches: both fully end-to-end (direct steer-
ing/acceleration prediction) and waypoint prediction in our closed-loop F1 testbed

Section 2 provides a description of the problem and it’s mathematical formulation. Section
3 describes some related work in this domain. Section 4 describes our open-source testbed and
evaluation framework. Section 5 describes our proposed network architecture and it’s underlying
mathematical basis in Bézier Curves. Section 6 presents our empirical evaluation of both the open-
source testbed and a case study of several autonomous racing methods within that testbed. Section
7 concludes and proposes some future work.

2

Neural
Network

Steering
Acceleration

Pure Pursuit
Control

Neural
Network

Trajectory
Waypoint

Steering
Acceleration

Pure Pursuit
Control

Neural
Network

Bézier
Curves

Steering
Acceleration

Pixels to
Control

Pixels to
Waypoints

Pixels to
Curves

Figure 1: Several approaches to autonomous racing. Ultimately, any control strategy must provide
steering and throttle values for the vehicle. We present a case study of these approaches in section
6.

2 Problem Statement:

The problem of autonomous driving distills to the task of scene understanding through sensor mea-
surements, e.g. cameras, LIDAR point clouds, ultrasonic sensors, etc., and producing control inputs
for the car, typically steering angle and throttle. Expressed mathematically, if the domain of the
vehicle’s entire sensor suite is X and the space of the vehicle’s control outputs is U, then the general
problem of autonomous driving is a mapping from X → U. Autonomous racing requires a great
many control inputs: steering, acceleration, clutch, fuel mix selector, clutch bite point, and regen-
erative braking; just to name a few. For simplicity in this preliminary work, we assume that the
control domain of the car is steering and acceleration. It is also assumed that these control values
are linearly independent. This means the car’s control domain is a 2-dimensional euclidean space,
R2. An autonomous racecar would likely have multiple sensing modalities such as 2D vision, 3D
LIDAR, and sound measurement. However, for this work, we focus on a vision based approach
and assume that the car’s input sensor domain is fixed-width images: R3xHxW , i.e. images with 3
channels (3-channel color images are assumed for this work) of height H and width W .

We consider three high-level approaches to this problem:

1. Fully End-To-End: training a network to map images directly to control inputs for the au-
tonomous car (steering, throttle, etc.)

2. Trajectory Waypoint Prediction: training a network to map sensor data to a series of waypoints
for a car to follow, with a traditional controller such as Pure Pursuit deciding on control values
for the car to best follow those waypoints

3. Trajectory Prediction with Bèzier Curves: similar to the second approach, but training a
network to map sensor data to a parameterized representation of the trajectory itself rather
than a sample of points on that trajectory.

Figure 1 provides a graphical description of these three approaches.

2.1 End-To-End Driving (Pixels to Control)

There is a great body of work in this domain centered around the special case where U consists of
only steering angles. NVIDIA’s PilotNet architecture [Bojarski et al., 2017] is considered a seminal

3

work on this approach. . It focuses on mapping what the car’s sensor suite is seeing at the present
time to a single control command, at the present time. This is done in an end-to-end manner i.e.
the DNN is trained to directly map pixels to control outputs: R3xHxW → R2.

However, this model of autonomous driving does a poor job of capturing how expert drivers
behave. For instance, a Formula One racing driver does not simply analyze the pixels directly in
front of him and map those pixels directly to a single steering angle and throttle pressure. An
expert driver considers a history of previous observations to build up some temporal context about
the scene. Additionally, using only single static images can create an ill-posed problem in which the
map from pixels to control is not a function. Consider the images and corresponding ground-truth
trajectories in Figure 2. Even though the images are similar, their ground-truth trajectories differ
noticeably. Within only 1.4 seconds, the paths diverge by almost 9 meters. In a high-speed scenario
like racing, this could easily be the difference between a successful race and a devastating crash.

(a) Two similar images (b) Corresponding trajectories (c) Distance between the two tra-
jectories

Figure 2: Purely Markovian methods like CNNs can present an ill-posed problem. For two very
similar static images, the trajectories differ significantly.

For example, if a driver an ego vehicle sees a car directly in front of him but knows (from previous
observation) that this car is moving away from him, he would behave differently than he would if he
saw the exact same car in the exact same position, but with a relative velocity towards the ego vehicle.
This problem of the exact same scene mapping to multiple control decisions, depending on context,
does not lend itself to machine learning techniques that assume a functional mapping between
input measurements and output predictions. An alternative approach [Weiss and Behl, 2020] is to
consider a sensor reading as a sequence of images: Ii−N , Ii−N+1, Ii−N+2, ..., Ii, where the subscript
i represents the current time and c represents some number of time-steps into the past, as a single
measurement that is then used to predict a sequence of control outputs ri+1, ri+2, ri+3, ...ri+P ∈ R3,
where rk represents a control output at time k. This view of the problem is a mapping from a context
window of sensor readings to an intent window of control outputs for the autonomous vehicle:

RNxCxHxW → RPx3 (1)

However, this fully end-to-end approach has it’s weaknesses. For very high-speed systems such
as a race car, small errors in a control input map to very large errors in the actual path the car
follows and can create catastrophic results. This problem is somewhat intuitive to human drivers.
For example, when driving at highway speeds, human drivers prefer not to make aggressive steering
maneuvers unless needed to avoid a crash. As opposed to low-speed situations, where quick changes
in steering are quite common to make sharp turns, maneuver around an obstacle, or park a vehicle.

2.2 Trajectory Prediction - Pixels to Waypoints

To remedy this problem, one could view the problem of autonomous driving not as a static function
from pixels to control, but as a temporally varying task that maps 1-dimensional manifolds, curves,
in a space of sensor inputs to curves in the ambient task space of the ego vehicle. In this approach,
rather than mapping a sequence of context images directly to a sequence of control outputs, the

4

autonomous car needs to predict a sequence of waypoints in the ego vehicle’s task space. I.e.
the problem becomes mapping as sequence of images: Ii−N , Ii−N+1, Ii−N+2, ..., Ii to a sequence of
waypoints: ~ri+1, ~ri+2, ~ri+3, ...~ri+P ∈ RD where D is the dimensionality of the task space. Expressed
mathematically, a function of the form:

RNx3xHxW → RP x D (2)

For this work, we consider the sensor space as only images and the ambient task space is assumed to
be a 2-dimensional manifold embedded in R3. This approach falls along a similar lines as end-to-end
control by mapping a context window to a long-term intent, but the intent window is a set of points
for the car to follow rather than a control schedule. The task of mapping a predicted trajectory for
the car to follow down to a specific steering and throttle value for the car’s low-level control is left
to classical control techniques based on a bicycle model of the car’s kinematics. For this work, a
Pure Pursuit controller is used, but this model is generalizable to other control strategies.

This approach also has it’s weaknesses. It suffers from the so-called “curse of dimensionality” and
can produce very non-smooth paths. With so many parameters required to represent a single output
(P x D of them), models that are already prone to over-fitting like deep neural networks can predict
very noisy output trajectories that can vary significantly with only minor (possibly imperceptible)
changes in the input images. Additionally, because these parameters represent waypoints, they are
not just a set of real numbers, their ordering has specific and actionable meaning. If a model predicts
even a single waypoint incorrectly, this can cause a serious error in the car’s chosen control action.
This is especially true for our chosen control algorithm of Pure Pursuit, if the incorrectly predicted
point happens to be chosen as the lookahead point. Section 5.1 describes what this means in more
detail.

2.3 Trajectory Prediction - Pixels to Bezier Curves

Finally, we consider a novel approach to autonomous racing. Rather than training a neural network
fully end-to-end, we view the problem of trajectory prediction not as a mapping from images to
waypoints, but from images to a parameterized description of a smooth 1-manifold embedded in the
car’s task space. B-Splines are a very intuitive choice, as they are C∞ curves and are commonly
used for motion planning tasks [Foo et al., 2009, Lian and Murray, 2002]. However, their recursive
representation does not fit well with gradient back-propagation, making it difficult to apply them
in the context of machine learning. To remedy this, we consider using Bézier Curves as a canonical
form of curves in an autonomous racecar’s task space. Bézier Curves are a linear combination of
Bernstein Polynomials and are described in more detail in section 5.2.

Regardless of the chosen approach. Any supervised machine learning method technique requires
significant amounts of training data for fitting a model. We describe our fully open-source Deep-
Racing testbed and data collection infrastructure for gather training data in a highly photorealistic
racing environment in Section [4].

3 Related Work

There is existing literature for end-to-end autonomous driving. We divide the related work into
simulation testbeds and autonomous driving methods and provide a brief reprise on both.

3.1 Autonomous driving simulators

There exists a great deal of related work in simulation for autonomous driving (AD). Traditionally,
simulation capabilities have been primarily used in the planning and control phase of AD [Likhachev
and Ferguson, 2009, Buehler et al., 2009, Katrakazas et al., 2015, Anderson et al., 2010, Best et al.,
2017]. More recently, simulation has been used in the entire AD pipeline, from perception and
planning to control Pendleton et al. [2017]. Waymo has claimed that its autonomous vehicle has

5

been tested for billions of miles in their proprietary simulation system, CarCraft Madrigal [2017],
little technical detail has been released to the public in terms of its fidelity for training machine
learning methods. Researchers have tried to use images from video games to train deep-learning-
based perception systems Johnson-Roberson et al. [2016], Richter et al. [2016b].

There are several examples of video games being used as a simulator to aid development of
autonomous driving. Several are based on the popular Grand Theft Auto (GTA) game [Richter et al.,
2016a], utilizing the high fidelity graphics of Rockstar Games’ c© state-of-the-art rendering engine.
However, while being photo-realistic, this game is known for flaws in the underlying physics engine,
since it was not intended to be used as a simulator. This technique also requires a modification to
the underlying game engine code in order to extract data (steering, acceleration, etc.) attached to
each game screenshot. This modification ran afoul of Rockstar’s copyright protections, and both of
these projects infamously received cease and desist letters from Rockstar Games to pull the code
from public domain. While creating DeepRacing, we ensured that our F1 2019 simulator requires
no such “hacking” of the unaderlying game engine. It uses public APIs for screen capturing as well
as a stream of UDP packets that the F1 game broadcasts. End-to-end driving was showcased in
the car racing game TORCS [Wymann et al., 2000] using Reinforcement Learning but its physics
and graphics lack realism. The data collected from the racing game TORCS, for example, have a
biased distribution in visual background and road traffic and thus severely diverge from real driving
scenarios. Microsoft AirSim [Shah et al., 2017] and CARLA [Dosovitskiy et al., 2017] are examples
of open-source autonomous driving simulators but they are are largely restricted to urban driving
scenarios and are not suited for development and testing of end-to-end autonomous racing.

3.2 Autonomous Driving Architectures: Fully End To End

In one of the earliest work on end-to-end autonomous driving NVIDIA [Bojarski et al., 2017] pre-
sented the PilotNet CNN architecture. PilotNet is a feed-forward style network that directly regresses
to a single steering value for each input image obtained from a front facing dashboard camera. How-
ever, PilotNet is limited by it’s inability to capture temporal information. Each input image is run
through the CNN separately with no time-varying context around that image. This is not just a
limitation of PilotNet, but of CNNs in general. Maqueda et al. [2018] remedy this problem with
an event camera to batch images from an arbitrary number of time-steps as an input to a CNN
and achieve a performance increase. Fernando et al. [2017] present a different approach that uses
Long Short-term Memory Cells [Gers et al., 1999] as a means of capturing a history of the steer-
ing trajectory and encode temporal structure of the problem. Xu et al. [2016b] present a similar
technique that uses a Fully Convolutional Network (FCN) to extract a feature representation of the
input space, but limit their model to classification among a discrete set of actions: go straight, stop,
left turn, and right turn.

Eraqi et al. [2017] use a novel combination of CNN and a traditional auto-encoder approach.
This network uses a CNN for feature extraction and applies an encoding function to translate the
regression problem into a more manageable classification problem. Eraqi also presents the novel
concept of a “sliding window”, a variable length temporal sequence that is input into the LSTM,
allowing the model to encode temporal information at arbitrary lengths. While their results indicate
that auto-encoding the LSTM outputs improves performance over directly regressing to steering
angle, their model also only predicts steering one time-step into the future and does not capture the
expert driver’s long-term intent.

Chen et al. [2015] also present a novel approach that blends expert domain knowledge of highway
driving by defining a notion of image affordance that is then mapped to a steering command.
However, like PilotNet, their approach only considers current image data and is limited to a fixed
set of affordance templates that are purpose-built for only highway driving.

6

3.3 Autonomous Driving Architectures: Pixels to Trajectories

However, end-to-end control has it’s limits. Wrapping the entirety of a perception-planning-control
pipeline into one black-box network can exacerbate the the problem of overfitting, as a single deep
network needs to learn all three high-level tasks as part of a single model. We show in our experiments
in section 6 that just because an end-to-end (pixels −→ control) method performs well on unseen
validation data (as measured Root-Mean-Squared error), that does not mean that same method
contains a useful driving strategy that will perform well in an actual live-driving test.

To help remedy this problem of over-fitting and produce more scalable methods, there is existing
work in autonomous driving by trajectory prediction (pixels −→ trajectories). For example, Altch
and de La Fortelle [2017] use an LSTM cell to predict a series of waypoints for images of highway
driving at varying traffic densities. Mohammed et al. [2019] present an approach for generating
waypoints with a CNN and then using a Model Predictive Controller (MPC) to control the vehicle.
Chen et al. [2019] use a similar approach to predict waypoints based on expert demonstration.
Bansal et al. [2018] is a blend of several techniques, but their neural network is penalized (increased
loss) for veering too far off of a prescribed list of waypoints.

3.4 Autonomous Driving Architectures: Other Approaches

Kim et al. [2017] use a similar approach but predict an occupancy grid of the ego vehicle’s immediate
surroundings. This occupancy grid is then used as input for a classical motion planning approach
to determine control actions. Pan et al. [2017] use a Reinforcement Learning (RL) approach to
autonomously drive in a TORCS simulator. However, their experimental evaluation is limited to an
open-loop accuracy evaluation on unseen test data and does not offer closed loop testing to evaluate
real driving performance. Michels et al. [2005] use a similar approach and also intentionally focus
on high-speed scenarios, similar to racing.

4 DeepRacing: F1 Racing Simulation

In order to train an end-to-end neural network to race autonomously using the context and the
intent described in the previous section; we need a reliable way to generate annotated training data.
Obtaining such annotated data for real motor-sport racing drivers is difficult since these data are
often trade-secrets and not available in the public domain.

Furthermore, it is not enough to only obtain training data, but also important to close the loop
and autonomously race in the same environment to enable evaluation of end-to-end models, and
reinforcement learning approaches. Consequentially, we use the F1 2019 racing game released by
Codemasters c© as a realistic testbed for autonomous racing that is built on top of decades of work
in 3D graphics and physics simulation. We now describe the novel features this first-of-it’s kind
testbed provides.

4.1 DeepRacing realism

Photo-realism and physics modeling: The game is extremely photo-realistic, as shown in Fig-
ure 3, and is based on high-fidelity simulated Newtonian physics, with detailed simulation of the
car’s drive train, high-speed aerodynamic drag, and even a simulated traction/slip interface between
the car and the track surface. Due to its realism, the F1 series was the first game to be used in the
Formula One eSports Series, which debuted in 2017 [esp, 2017]. There is also evidence to suggest
that real-life F1 drivers use this game for practicing [max, 2017]. The photo-realism in the driver’s
point-of-view combined with the physics realism of the game’s engine provide a strong opportunity
to gather training data as close to real-world racing scenarios as one can get without the cost and
risk of a real race-car.
Real weather having real effects: The racecar reacts to weather conditions, in terms of tire
degrading, braking, and handling. For example, under wet track conditions braking at the last

7

Figure 3: We use the F1 Codemasters c© game as a virtual testbed for training and closed-loop testing
for our autonomous racing deep neural network. This is the first time the highly photo-realistic and
high fidelity physics engine enabled game has been used as a CPS testbed in an entirely legal way
without cracking and tweaking game engine code.

minute before a corner, the car will have a different response as opposed to braking under dry
conditions. Rainstorms are intense, reducing visibility and slowing races down, and again, thats
replicated in this game.
Deep customisation: The game facilitates a high degree of customization including adjustable
dead zones, linearity, and saturation for vehicle control. Settings for aerodynamics, traction, tyre
choices, etc. are also highly customizable.
Closed-Loop Testing: Our infrastructure supports the ability to push steering and throttle com-
mands back into the game. This closed-loop support will enable AI researchers to develop and test
autonomous racing policies with this highly realistic game environment.
Figure 3 gives a graphical description of this testbed.

4.2 UDP data stream

The game advertises a “fire-and-forget” data stream of telemetry data containing a variety of infor-
mation about the game’s current state over a User Datagram Protocol (UDP) network socket. Each
packet in the stream is a snapshot of the game’s state tagged with a timestamp for when that state
was generated. A full description of the F1 telemetry stream and all of the information it provides

is available on a Codemaster’s
TM

forum Codemasters. The state variables broadcast by the game
include, but are not limited to:

1. Steering angle, throttle and brake of all vehicles (including the ego vehicle)

2. Position and velocity of all vehicles (including the ego vehicle)

3. Various state information about the ego vehicle such as wheel speed, amount of fuel remaining,
and tire pressure.

8

4.3 DeepRacing framework

Unfortunately, the game does not tag each packet of state information with an image of the driver’s
point-of-view at that packet’s timestamp. Because supervised machine-learning techniques require
labeled training data, we present the DeepRacing API, a fully open-source C++17 API for both
grabbing screenshots of the driver’s perspective (the “ego” vehicle) in the F1 game and automatically
tagging them with ground-truth values of the game’s state at the time that image was captured. In
this C++ framework, a single dedicated process spawns two threads:

1. For capturing screenshots of the drivers point of view, which we call the “screen-capture
thread”

2. For listening for telemetry data from the game on a UDP socket, which we call the “telemetry
thread”

Each thread has a copy of a shared CPU timer. The screen-capture thread uses our C++17 API,
built on top of Microsoft’s DirectX, for capturing images of the driver’s point of view and tags each
image with a system timestamp from the operating system. The telemetry thread listens for UDP
data from the game and tags each packet with a system timestamp from the same system clock.

4.3.1 Data Synchronization

Because each UDP packet is also tagged with a session timestamp from the F1 game’s internal
(and black box) game clock, we can then convert OS timestamps to game session timestamps by
fitting a least-squares regression line to the session timestamps versus the OS timestamps of the
UDP packets. Note that, if our infrastructure is functioning properly, this relationship must be a
line with slope close to 1.0, as 1 second on the game clock should correspond to exactly 1 second
on the OS clock. We use the r2 value of this regression line as well as how close its slope is to 1.0
to evaluate how closely the timescale in our logging infrastructure matches the internal clock of the
F1 game. Results from this evaluation are included in section 6.

The UDP broadcast operates at 60 Hz and our screencapture framework can achieve frame-rates
of up to 35 Hz, enabling high-fidelity data-logging.

4.4 Open-loop testing

Once each image is given a game session timestamp, state information from the UDP stream can then
be assigned to each image by interpolation over the relevant state variable with respect to session
time. For example, in our experiments, we use B-Spline fitting to determine the ego vehicles position
and spherical linear interpolation over unit quaternions to determine the ego vehicle’s orientation
as a function of session time. We also evaluate our ability to push steering and acceleration control
inputs back into the game via a virtual joystick API built on top of vJoy [Eizikovich] by measuring
the latency between when a command was applied to the virtual joystick and when that command
is reflected in the game’s UDP stream. This experiment was conducted by setting the steering angle
on our virtual joystick to 0.0 at a known system timestamp, then linearly ramping it up to 1.0 (all
the way to the left) at a fixed update rate. We then measure the latency of our system by fitting
a regression line to the measured steering angles coming off the UDP stream versus their respective
system timestamps. If this system has 0 latency, the x-intercept (time) of this regression line would
be the exact system time the ramp-up began. If there is some latency, then the x-intercept will be
offset from the ramp start. An example of such a regression experiment is plotted in figure 4. Our
experiment shows an x-intercept of 4926.16 milliseconds for a ramp-up that was begun at a system
time of 4952.95 milliseconds. This indicates a lagtime of 4952.95 − 4926.16 = 26.79 milliseconds
between when control commands are applied and when they are reflected in the game. However,
the UDP stream only publishes at 60Hz, which means as much as 1

60Hz = 16.6̄ milliseconds of that
delay could stem from the UDP stream itself. In other other words, it’s possible that as much as
16.6̄ milliseconds of the measured lagtime stems from the fact that changes in the game’s current
state might not get published on the UDP stream for as much as 16.6̄ milliseconds.

9

5000 6000 7000 8000 9000
System Time (milliseconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
St

ee
rin

g
An

gl
e

([-
1,

1]
)

Regression Line & Expected X-intercept

Regression Line
Expected Start Time
steering angle=0
Measured Data

Figure 4: An example experiment evaluating our virtual joystick infrastructure. For this experiment,
the ramp-up in steering angle began at a system time of 4.952950 seconds. The regression line shown
has an x-intercept of 4.926211 seconds, indicating a latency of 26.79 milliseconds

4.5 Closed-loop testing

Finally, our test-bed setup also supports the ability to close the loop and autonomously drive the F1
car in the game using control inputs predicted by autonomous driving policies. This is accomplished
with the same virtual joystick setup described in subsection 4.4. We evaluate this closed-loop
capability by utilizing “oracle” data in the form of a pre-recorded list of vehicle positions (waypoints)
that represent the optimal raceline for the Australia circuit in the F1 game and a simple pure-pursuit
controller to steer the car with ground-truth knowledge of the track’s optimal raceline. We then
measure the effectiveness of this controller by the distance from the path followed by the pure-
pursuit controller to this optimal raceline. Note that this evaluation is not intended to evaluate
any particular autonomous driving model, but is intended to show the accuracy of our closed-loop
framework for testing such models. This closed-loop test shows a mean distance to the optimal
raceline of 0.340936 meters. Figure 5 a) shows an optimal raceline overlaid with the path followed
by our pure pursuit control, the two paths are almost indistinguishable. Figure 5 b) is a histogram
of the distance between the pure pursuit control’s path and the optimal raceline.

4.6 DeepRacing API

This data collection and testing infrastructure, implemented in C++, is called the DeepRacing API,
the first closed-loop environment of it’s kind for collecting training data, and testing learned models
on simulated F1 race-cars in the photo-realistic F1 2019 game. The software itself is architected as

10

−800 −600 −400 −200 0 200 400 600 800
X

−750

−500

−250

0

250

500

750

Z

Reference Raceline
Pure Pursuit Raceline

(a) Racelines

0.0 0.5 1.0 1.5 2.0
Distance to Optimal Raceline

0

200

400

600

800

1000

Nu
m
be

r o
f S

am
pl
es

(b) Distance Histogram

Figure 5: A comparison between the path followed by our closed-loop infrastructure an the optimal
raceline for the Australia Circuit. The two paths are almost indistinguishable.

an object-oriented library that exposes a simple interface for allowing user-written code to handle
data captured by the underlying infrastructure.

A simple interface, called IF1FrameGrabHandler in the C++ API, is exposed that defines what
the library does with new timestamped images as they comes off of the screencapture, with the “hard
work” of actually obtaining that data hidden in a separate library. User’s need only overwrite the
appropriate methods in this interface with an implementation of what to do with captured images.
A similar interface, called IF1DatagrabHandler in the C++ API, is exposed for handling captured
UDP packets. Again, users need only overwrite a few methods to receive timestamped UDP packets
as a C++ object. This clean abstraction allows users to define whatever data flow model makes sense
for their application. To generate datasets for our experiments in 6, we implement this interface to
save image data and UDP data to the file system with a buffered approach to ensure no packets or
images are lost during the delay inherent to filesystem access. Other data flow models are possible,
e.g. sending data to a cloud-based server, displaying to screen, etc. Creating such models within
our framework is only a matter of implementing the simple C++ interfaces.

4.7 DeepRacing ROS2 Interface:

Additionally, we present bindings to the very popular Robot Operating System 2.0 (ROS2). A
ROS2 Publisher class is provided that broadcasts both telemetry data and images from the F1 game
on several ROS2topics (fire-and-forget broadcasts). Any ROS2 nodes can then listen to these data
streams, enabling researchers to integrate this testbed with existing codebase in a ROS2 ecosystem.
All of this software has been released under an Open-Source license.

Images of driver’s

point-of-view

Telemetry Data

(UDP)

ROS2 Data

Messages

ROS2 Image

Messages

Conversion to

ROS2 Eloquent

Messages

• Deep Learning

• Pure Pursuit

• Data Logging

Figure 6: ROS2 integration for the DeepRacing framework. In this figure, “Image Transport”
refers to an open-source ROS2 library that handles compressing/decompressing images and routing
them through the ROS2 network via a set of rostopics. F1 2019TMis a registered trademark of
Codemasters c©. The Formula One logo is a registered trademark of the Formula One Group.

11

5 AdmiralNet: Mapping Context to Intent

The second research contribution of this work is AdmiralNet, an improvement over NVIDIA’s Pi-
lotNet Bojarski et al. [2017], a deep neural network capable of learning to race autonomously. We
train two forms of AdmiralNet, one designed to map images to waypoints for a car to follow, and
another to map images to a parameterized trajectory for a car to follow, in our case: Bézier Curves.
The key building blocks in AdmiralNet’s architecture are:

1. A Pure Pursuit low-level controller.

2. 2D Convolution Neural Networks

3. 3D Convolution Neural Networks

4. Recurrent Neural Networks

5. Bézier Curves

We go over each of these components of our implementation next.

5.1 Pure Pursuit Control

Pure pursuit, first described in Wallace et al. [1985], is a widely used algorithm for path following in
front-wheel steered, non-holonomic vehicles [Naeem et al., 2004, Samuel et al., 2016]. At it’s core,
given a sequence of waypoints {W1,W2,W3, ...Wn ∈ Rd} expressed in the car’s local coordinate
system, Pure Pursuit sets a steering angle that puts the car on the circular arc connecting it’s
current position and a desired “lookahead-point”(see Figure 7). A common practice is to select the
point that is closest to a lookahead distance away from the ego vehicle, with the lookahead distance
set to a constant factor times the ego vehicle’s current speed. That is:

dlookahead = γv

Wlookahead = arg min
W

| ‖W‖ − dlookahead|

Where v is the ego vehicle’s current speed and γ is a tuneable parameter. This proportional
control strategy keeps the car from making maneuvers that are too aggressive for the car’s actuators
to handle at the expense of potentially “cutting corners” on sudden sharp turns at high speed.

As will be described later, in our novel AdmiralNet framework, we produce a set of waypoints
for the autonomous racecar to follow, and the low-level Pure-Pursuit controller will generate the
steering and velocity commands to follow those waypoints.

We evaluate the closed-loop performance of our pure-pursuit implementation in Section 6.

12

�

�

Lookahead Point

Reference

Trajectory

R

L

Figure 7: Illustration of Pure Pursuit Control. A steering angle δ is selected such that a car with
wheelbase (distance between the axles) L follows a circular arc towards a lookahead point selected
from a reference trajectory. The radius of this circle, R, can vary as it needs to and becomes infinite
in the case of the car directly facing the lookahead point

5.2 Bézier Curves

A Bézier curve is a parametric curve heavily used in computer graphics and related fields. The
curve, a linear combination of Bernstein Polynomials, is named after Pierre Bézier, who (somewhat
poetically) developed them to model car bodies on Renault racecars.

A Bézier curve is formed from a combination of Bernstein polynomials that maps a scalar pa-
rameter t ∈ [0, 1] to a point in a euclidean space of dimension d, Rd. More specifically, a Bézier
Curve is a weighted combination of a set of “control points”, with the weights computed from the
Bernstein polynomial basis. These control points define a Bézier curve as follows [Mortenson, 1999]:

For a set of control points:

P = {P0,P1,P2,P3, ..Pn ∈ Rd}

The corresponding Bézier curve, B : [0, 1]→ Rd, as a function of the parameter, t, is:

B(t) =

n∑
k=0

(
n

k

)
(1− t)n−ktkPk

. Figure 8 shows several such curves. For most practical cases, as well as our case, the parameter t
will represent time (or step size) normalized to the interval [0, 1]

The dimensionality of the ambient euclidean space, d, is called the “dimension” of the Bézier
curve and the integer n, 1 less than the number of control points, is called the “degree” or “order”
of the curve and is also the degree of the underlying Bernstein polynomials. If the parameter, t, is
normalized to the interval [0, 1], then the Bézier curve always starts at P0 and ends at Pn, but does
not necessarily pass through any of the control points from P1 to Pn−1.

13

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A Bézier Curve of Order 1 and its Control Points
A Bézier Curve
Control Points
Velocity Vectors

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−1.5

−1.0

−0.5

0.0

0.5

1.0

A Bézier Curve of Order 2 and its Control Points
A Bézier Curve
Control Points
Velocity Vectors

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−1.0

−0.5

0.0

0.5

1.0

A Bézier Curve of Order 3 and its Control Points
A Bézier Curve
Control Points
Velocity Vectors

Figure 8: Several Bézier Curves of varying degree

14

We present a method of evaluating Bézier curves and their derivatives framed as a matrix mul-
tiplcation, making such a step very easy to integrate into a machine learning model trained by
a gradient back-propagation algorithm. Consider a fixed time-vector, t with N elements linearly
spaced on the interval [0, 1] i.e tk = k

N−1 :

t = [0,
1

N − 1
,

2

N − 1
,

3

N − 1
, ...,

N − 3

N − 1
,
N − 2

N − 1
, 1]

Consider a time matrix: A such that

Aij(t, n) =

(
n

j

)
(1− ti)

n−j
ti

j

A would then be N rows by n columns with each row corresponding to a time on the interval
[0, 1] and each column corresponding to a term of the Bézier curve’s Bernstein basis polynomial.

Consider a control point matrix, P, such that the kth row of P is just the kth control point of
the curve.

P =

P0

P1

P2

...
Pn−2
Pn−1
Pn

P would then be n + 1 rows by d columns, with each column corresponding to a dimension in the
curves ambient euclidean space.

Evaluating a Bézier curve, B, of order n with a control point matrix P on all of the times in t
then just becomes a matrix multiplication:

B(t) = A(t, n)P

Additionally, Bézier curve’s derivatives can also be evaluated as follows:

B
′
(t) = n

n−1∑
k=0

(
n− 1

k

)
(1− t)n−k−1tk(Pk+1 −Pk)

.
Note that this is equivalent to:

B
′
(t) = nA(t, n− 1)∆P

Where

∆P =

P1 −P0

P2 −P1

P3 −P2

...
Pn −Pn−1

And has 1 row fewer than P.

We also present a method for fitting a bezier curve to a set of points (in the least-squares sense).
For the same time vector, t, if given a matrix of points L sampled at the times in t such that:

L =

l0
l1
l2
...

lN−2
lN−1
lN

15

I.e., each lk ∈ Rd is a point sampled at time tk. The task of least squares fitting becomes:

P∗ = arg min
P

‖A(t)P− L‖

The solution to this least-squares problem can be framed in terms of the Singular Value Decom-
position of A.

A = UΣVT

P∗ = VΣ−1UTL

We use Bézier curves as a parameterized representation of trajectories for a pure pursuit controller
as well as a means of predicting trajectories for a racecar to follow in subsection 5.5.

5.3 Fully End-To-End Baseline

A large body of work in this domain focuses on fully end-to-end algorithms[Chi and Mu, 2017,
Huston and Krapp, 2008, Katz et al.]. I.e. a network that is trained to map pixels in images directly
to control outputs for the vehicle. In this paper, we consider two baseline algorithms in this domain:

1. NVIDIA’s end-to-end PilotNet CNN [Bojarski et al., 2017]

2. A CNN-LSTM architecture that uses the output of a CNN as the input for a Long Short-Term
Memory (LSTM) Cell.

Both of these architectures are trained fully end-to-end under a loss function of the mean-squared-
error between the ground truth steering and throttle for a particular image and the predicted steering
and throttle:

Lendtoend =
1

2
[(φ∗ − φ̂)

2
+ (a∗ − â)

2
]

Where φ∗ and φ̂ are the ground-truth and predicted steering angles; and a∗ and â are the
ground-truth and predicted throttle values for the car. Although it is technically possible to apply
both throttle and brake at the same time, doing so can severely damage a racecar’s drive train. For
this work, we only consider throttle as a single scalar value in which positive indicates acceleration
and negative indicates braking. We show in our experiments in section 6 that this approach to
autonomous racing performs very poorly in a closed-loop sense.

5.4 AdmiralNet For Waypoint Prediction

We present a network architecture designed to map sequences of images (a context window) to
sequence of wayppoints in the car’s ambient task space (an intent window). The input context
window of this model is a sequence of C color (RGB) images, each with height H and width W ,
such that each input tensor is Cx3xHxW (the second dimension is 3 because each RGB image
has 3 channels). For our experiments, we use C = 5, H = 66, and W = 200. It’s output is a
sequence of waypoints in the car’s task space that are predicted to be optimal in some sense. For
our experiments, we define “optimal” to be the trajectory followed by an expert example upon seeing
that sequence of images. Additionally, we approximate the car’s ambient task space as the euclidean
plane, R2, of the car’s axles. This architecture is named The AdmiralNet Waypoint Predictor.

Each image is passed through a Convolutional Neural Network (CNN) that maps each image to a
“deep feature” vector. These C feature vectors are then used as the inputs to C recurrent calls to an
LSTM with a hidden dimension h to build up the LSTM’s hidden state with a learned encoding of the
context window. We also extend Chi and Mu [2017]’s method of 3D “spatio-temporal convolution”
by passing the same sequence of images through a 3D convolutional network. The output of this 3D

16

66x200x3

31x98x24

14x47x36
5x22x48 3x20x64 1x18x64

1152

conv5x5, 24
stride (2, 2)

conv5x5, 36
stride (2, 2)

conv5x5, 48
stride (2, 2)

conv3x3, 64
stride (1, 1)

conv3x3, 64
stride (1, 1) flattenInput Images

Figure 9: Our CNN that maps images to feature vectors. These feature vectors serve as a learned
encoding of the context window. Although omitted from the graphic for clarity, batch normalization
layers are also included after each convolutional layer. Image/feature map sizes are displayed as
Height x Width x Channels

convolution is then used as the input for p additional recurrent calls to the LSTM. The resulting
p outputs are then passed to a linear layer with input dimension h and output dimension 2. The

outputs of this linear layer are taken as the sequence of predicted waypoints, [~̂y1, ~̂y2, ~̂y3, ...~̂yp ∈ R2],
each being a point in the car’s local coordinate system, consisting of a lateral axis and a forward
axis. To produce control outputs of steering and throttle, these points are then passed to a Pure
Pursuit Controller described in Section 5.1. For our experiments, we train this network to minimize
the average euclidean distance between the predicted waypoints and the ground-truth waypoints,

[
∗
~y1,

∗
~y2,

∗
~y3, ...,

∗
~yp ∈ R2], followed by a human example for that same sequence of images:

Lwaypoint =

p∑
i=0

√∥∥∥∥~̂yi − ∗~yi∥∥∥∥
To enable an ablative analysis of this 3D convolutional subnetwork, we also test this same model
with fixed constants used as the input for the final p calls of the LSTM. These constants are learned
parameters of the model and are optimized during the network training process. The results of this
ablative analysis are contained in section 6.

5.5 AdmiralNet For Bézier Curve Prediction

Waypoint prediction also has it’s limits. Derivative information cannot be implicitly encoded in a list
of waypoints, they must be inferred numerically and are therefore not well suited to gradient back-
propogation. Additionally, this approach suffers from the “curse of dimensionality”. Each trajectory
required Nxd parameters to represent, forcing the machine learned model to learn significantly more
parameters to predict more dense trajectories.

To address these limitations, we present a novel approach for predicting future trajectories by
using Bézier Curves as a dimensionality reduction technique. This approach is very similar to the
approach in Section 5.4, but we train our model to predict the control points of a Bézier Curve instead
of directly predicting waypoints. I.e., we train a model to predict a parameterized representation of
a curve rather than to learn samples from that curve. This method addresses both limitations
of the waypoint method. Derivatives of a Bézier Curve can be readily computed in closed-form.
Additionally, the curse of dimensionality is mitigated by the fact that any number of points can
be sampled from a Bézier Curve without the need to learn any additional parameters in a machine
learned model. We employ the same methodology as in Section 5.4 to build up a temporal context
for the LSTM and use some recurrent calls to project that context into an intent window. However,
we now employ two key additional techniques:

17

…

…

LSTM LSTM LSTM
…

Build Temporal
Context

2D Deep
Convolu�onal

Neural
Network

LSTM

2D Deep
Convolu�onal

Neural
Network

LSTM

2D Deep
Convolu�onal

Neural
Network

LSTM

3D Convolu�onal
Neural Network

Image Sequence

Concatenate
along �me

axis

Predicted
Waypoints

Figure 10: Architecture For The AdmiralNet Waypoint Predictor. The Deep CNN layers are the
ones shown in Figure 9

1. The outputs of the p additional calls to the LSTM are concatenated along the time axis to
form a 2D “feature grid”. This feature grid is then interpreted as an image and passed through
another CNN

2. The output of this feature grid CNN is then linear mapped to predicted control points for a
Bézier Curve rather than directly predicting waypoints

Just as for waypoint prediction, we use a Pure Pursuit controller to map a predicted trajectory
to steering and throttle. However, we evaluate the predicted Bézier Curve on a fixed sample of the
interval [0, 1] to produce predicted waypoints rather than predicting the waypoints directly. For
each pair of image sequences and ground truth waypoints, the network is trained to minimize a loss
function that is a weighted sum of three terms:

1. The average squared norm between the predicted Bézier Curve control points and that of a
least squared fit (described in section 5.2) to the ground truth trajectory points: What we call
“control point loss”

2. The average euclidean distance between the predicted Bézier Curve evaluated on the interval
[0, 1] and the ground truth waypoints: What we call “Position Loss”

3. The average euclidean distance between the predicted Bézier Curve’s derivative (velocity)
evaluated on the interval [0, 1], but rescaled to the same time range as the ground truth labels,
and the ground truth velocities: What we call “Velocity Loss”

One could also use sums instead of averages, but this only scales each loss term by a constant
factor. The quantities described above are computed as follows for Bézier Curves of degree n, i.e.
with n + 1 control points. N represents the number of ground truth position/velocity waypoints

sampled for each image sequence. P̂ is the matrix of control points predicted by AdmiralNet,
∗
P

18

…

…

LSTM LSTM LSTM
…

Build Temporal
Context

2D Deep
Convolu�onal

Neural
Network

LSTM

2D Deep
Convolu�onal

Neural
Network

LSTM

2D Deep
Convolu�onal

Neural
Network

LSTM

3D Convolu�onal
Neural Network

Image Sequence

Concatenate
along �me

axis

Stack along
�me axis

2D Deep
Convolu�onal

Neural
Network

Predicted
control points

of Bézier Curve

Fully
Connected

Layers

Figure 11: Architecture For The AdmiralNet Bézier Curve Predictor. The Deep CNN layers are the
ones shown in Figure 9is the control point matrix derived from a least squares fit (from section 5.2) to the ground truth

waypoints, Ŷ is the sequence of predicted waypoints obtained by evaluating P̂ on [0, 1].

t = [t0, t1, t2, ...tN−1] (3)

∆t = tN−1 − t0 (4)

s =
t− t0

∆t
⊂ [0, 1] (5)

Ŷ = [~̂y0, ~̂y1, ~̂y2, ..., ~̂yN−1] = A(s, n)P̂ (6)

ˆdY

ds
= nA(s, n− 1)∆P̂ (7)

ˆdY

dt
= [

d~̂y0
dt
,
d~̂y1
dt
,
d~̂y2
dt
, ...,

d~̂yN−1
dt

] =
ˆdY

ds

ds

dt
(8)

ds

dt
=

1

∆t
(9)

ˆdY

dt
=

ˆdY

ds

1

∆t
(10)

Lposition =
1

N

N−1∑
i=0

∥∥∥∥~̂yi − ∗~yi∥∥∥∥ (11)

Lvelocity =
1

N

N−1∑
i=0

∥∥∥∥∥∥∥
d~̂yi
dt
−

∗
d~̂yi
dt

∥∥∥∥∥∥∥ (12)

19

Lcontrol point =
1

n− 1

n∑
i=0

∥∥∥∥~̂pi − ∗~pi∥∥∥∥ (13)

The overall loss function for the AdmiralNet Bézier Curve Predictor is a weighted sum of these
three loss functions:

L = wpositionLposition + wvelocityLvelocity + wcontrol pointLcontrol point (14)

Following the same procedure as with the Waypoint Predictor, we perform an abalative analysis
of the additional 3D convolutional subnetwork by replacing it’s output with learnable constants.
The results of this ablative analysis are contained in section 6.

5.6 Comments on Implementation Details

Autonomous racing is a very high-speed task. As such, a very fast running time for any autonomous
racing algorithm is desirable. Because evaluating a neural network can be a computationally ex-
pensive task, our approach uses a multi-threading approach to limit the impact of the computation
required to evaluate our model. At runtime, a separate thread is spawned to maintain a circular
buffer containing the C images that make up the input to both the waypoint predictor and the
Bèzier Curve predictor. This thread listens for new images and adds them to the circular buffer,
completely independent of the main control loop. The main control loop then grabs a snapshot of
this buffer and runs the model to produce a control value. This approach guarantees that the se-
quence of images in the circular buffer are always contiguous in time, there is no risk of dropping an
image because the main control loop is busy evaluating a neural network. Empirical measurements
of the runtimes of each of these loops are explored in subsection 6.3.

Additionally, to generate a lookahead point for the Pure Pursuit controller, the Bèzier Curve
predictor takes uniformly spaced samples from the predicted Bèzier Curve and selects a lookahead
point from these samples.

To generate throttle commands, a bang-bang control approach is used. If the car’s current
velocity is slower than the reference velocity of the predicted Bèzier Curve at the lookahead point,
the throttle is set to it’s maximum value and brake is set to 0. Otherwise, the brake is set to it’s
maximum value and throttle is set to 0. The Waypoint Predictor uses a similar approach, but fits
a spline to it’s predicted waypoints and evaluates that spline’s derivative to generate a reference
velocity.

These details are specific to our experiments, the models presented are scalable to other strategies
for transforming a predicted trajectory into steering and throttle commands.

We implement these models in the PyTorch [Paszke et al., 2019] framework. Additionally, an
NVIDIA GeForce GTX 1080Ti was used to test each model. Each model was trained on a distributed
cluster containing many NVIDIA GPUs.

6 Experimental Results

We now present several empirical results of this work.

1. An evaluation of how well our data-logging infrastructure is synchronized with the F1 game

2. Open-loop results of several neural network architectures trained on data from the game

3. A closed-loop driving evaluation of those same models

4. An evaluation of the running time of our approach

20

We show that our infrastructure infrastructure produces negligible error between logged values
and the true internal state of the F1 game. Additionally we provide case studies of several deep
learning models both in the open-loop (root-mean-square error) sense and in the closed-loop (true
driving performance) sense.

6.1 Data Logging Infrastructure

0 20 40 60 80 100 120 140

OS-tagged System Time
0

20

40

60

80

100

120

140

F1
 S
es
sio

n
Ti
m
e

F1 Session Time vs System Time

fitted line:
 y=0.999990*x-1.616987
measured data

Figure 12: A plot of F1 session times versus measured system times. For readability, the data has
been downsampled by a factor of 100. The slope of the regression line very close to 1.0 implies that
the timing between the F1 game clock and the measurable system clock is consistent. The intercept
of −1.616876 on the regression line indicates that the F1 session began broadcasting 1.616876 seconds
before the datalogger was started.

We present an evaluation of our datalogging infrastructure by measuring the relative slope be-
tween the timescale on the measured OS clock and the received timestamps from the F1 game. In
the ideal case, a slope of 1.0 would indicate that 1 second on our system clock corresponds to ex-
actly 1 second on the games internal clock, indicating our data logging infrastructure is synchronized
perfectly with the game. We evaluate our datalogging infrastructure by fitting a regression line to
measurements of the system timestamp assigned to the UDP packets versus their stated F1 session
time. Figure 12 shows a plot of such a regression line. The slope of this line is 0.99999, indicating
that each each second of system time adds 1 microsecond of error in the corresponding session time.
To put this in perspective, a data logging session that lasts 4 hours would only introduce 14 mil-
liseconds of error. NumPy reported an r2 value of exactly 1.0000, indicating that the error in this
fit is so small, NumPy is numerically incapable of computing it. The intercept of −1.616876 on the
fit line indicates that the measurements on the system clock began 1.616876 seconds after the F1
session began.

6.2 Neural Network Architectures

Each neural network architecture was trained for 100 epochs under it’s corresponding loss function
with a mini-batch size of 128. Stochastic Gradient Descent with a step size of 10−4 was used as
the underlying optimization routine for network weight training. For the Bézier Curve predictor,
we use weighting factors of wposition = 1.0, wvelocity = 0.1, wcontrol point = 0.05. Each model was
then tested on the Australia circuit by having each model control a standard F1 car on 5 test laps

21

around the track, the car was reset to the same starting position on each lap. To measure how
effectively each model races a lap, we define a “boundary failure” (BF) to be when an autonomous
agent veers outside the bounds of the track. We define a “Boundary Failure Score” (BFS) to be
the average distance outside the track the autonomous agent went during a boundary failure. A
boundary failure with a lower BFS is considered a better (“less bad”) failure.

6.2.1 Open-Loop RMSE Results

A traditional way to evaluate neural network models is with a classical “training set/validation set”
approach where models are trained on a specified dataset and then tested on an unseen validation
set under some open-loop metric. We show that such a metric does not necessarily correlate with
real-time driving performance. We performed such an evaluation of the purely end-to-end models.
The Root-Mean-Square-Error (RMSE) between predicted steering and ground-truth steering is used
as an evaluation metric.

Model Configurations RMSE Steering RMSE Throttle
PilotNet 0.179 0.317
CNN-LSTM 0.184 0.302

Note that the CNN-LSTM setup actually performs worse than PilotNet in the open-loop sense
in predicted steering angles and slightly better than PilotNet in predicting throttle values.

6.2.2 Closed Loop (Driving Performance) Results

To more appropriately evaluate these neural network architectures, we use a fully closed-loop ap-
proach. Rather than evaluating based only on an offline metric like Root-Mean-Square error. We
utilize our DeepRacing framework’s ability to close the loop and send steering, throttle, and brake

commands back into the Codemaster’s
TM

game to evaluate each network on it’s ability to actually
race a simulated F1 car. Specifically, we trained each model on ∼25000 images of training data
from the Australia F1 circuit. For PilotNet and the CNN-LSTM architectures, each image is labeled
with steering and acceleration. For both the Waypoint predictor and the Bézier Curve predictor,
each image is labeled with 60 future waypoints from an expert driver.

For these experiments, a context length of C = 5 is used for both the waypoint predictor and
the Bèzier Curve predictor. The waypoint predictor was configured to predict 20 timesteps into the
future, corresponding to 1.4 seconds. The same timescale was used for the Bèzier Curve predictor.

We ran each model 5 times and recorded the following metrics:

1. Whether the model successfully completed a lap

2. Mean Lap time (if a lap was successfully completed)

3. Mean time between boundary failures (TBF)

4. Mean distance along the track between boundary failures (DBF)

5. Mean Number of Boundary Failures (NBF)

6. Mean Boundary Failure Score (BFS)

Additionally, we conduct an ablative analysis of the effect of using the 3D Convolutional layers
to encode to compute the inputs for the final recurrent calls to the LSTM layer. For comparison,
we evaluate both the waypoint predictor and the Bézier Curve predictor with constant values as the
input to the final LSTM calls. These constant values are defined as model parameters and their
values are learned during the training process. The results from these experiments are tabulated
below. All figures are arithmetic means across all 5 runs. DNF indicates “did not finish” a successful
lap.

22

50

100

150

200

250

300

Sp
ee
d
(k
 h
)

(1.0

(0.5

0.0

0.5

1.0

St
ee
rin

g
([-
1,
1]
)

0 1000 2000 3000 4000 5000
Distance (meters)

Bezier Curve Predictor
Waypoint Predictor

Speed And Steering versus Distance

Figure 13: A Formula 1 style control plot for a test run. The Bézier Curve predictor produces much
smoother velocity profiles

Note that the Bézier Curve predictor with the 3D convolution outperforms all 5 other models
on all metrics, except for lap time. However, the modest improvement in lap time by removing the
3D convolutional subnetwork comes at the expense of significantly more boundary failures with a
significantly larger boundary failure score, indicating that this improvement in lap time is really just
a result of illegally “cutting corners”. PilotNet was unable to complete a successful lap, as it crashed
into a wall almost immediately (within 5 seconds on all 5 runs). The CNNLSTM architecture was
also unable to complete a successful lap, but managed to make it around the first turn and down
the initial straightaway. The Bézier Curve predictor also results in a smoother velocity curve than
direct waypoint regression (see Figure 14).

Interestingly, the CNNLSTM architecture outperforms PilotNet in the closed loop sense (it was
at least able to make the initial turn and most of the way down the initial straightaway) despite
performing slightly worse than PilotNet under a purely open-loop evaluation.

Finally, we performed a longevity test of each of the trajectory-based methods. In this test, each
model was deployed to a test run and allowed to continue until the vehicle either crashed or became
inoperable. The results of this longevity test are in table 2.

23

−750 −500 −250 0 250 500 750
−800

−600

−400

−200

0

200

400

600

800
Bezier Predictor
CNNLSTM
PilotNet

Figure 14: A plot of the path followed by our approach versus the two open-loop baselines. PilotNet
fails almost immediately and the CNNLSTM only makes it about half-way around the track.

6.3 Computation Time Analysis

The main control loop for each approach consists of three high level steps:

1. Get a snapshot of the circular buffer containing the C most recently measured images

2. Evaluate the model on this snapshot

3. Generate steering/throttle commands from the model’s output

We measured the running time of this control loop for each approach. Additionally, we measure
the running time required to save a newly received image to the circular buffer. The results are
tabulated in table 3.

The Bèzier Curve predictor is the slowest model, this is not surprising as it involves the most
neural network layers. However, at 16.393Hz, it is still sufficiently fast for autonomous racing.

Model
Configuration

Lap Time
(seconds)

TBF
(seconds)

DBF
(meters)

Number of
Boundary Failures

BFS
(meters)

Successful Laps

PilotNet DNF 4.07 181.444 1.800 4.267 0
CNN-LSTM DNF 6.367 304.490 3.600 2.539 0

Waypoint Predictor
without 3D Convolution

113.38 11.92 626.23 6.6 7.02 1

Waypoint Predictor 106.683 16.739 855.817 5.6 0.239 4
Bézier Curve Predictor

without 3D Convolution
99.95 19.01 1008.46 7.4 2.89 5

Bézier Curve Predictor 101.72 33.62 1786.36 1.8 0.041 5

Table 1: Results of our closed-loop testing. Note that the Bézier Curve Predictor outperforms all
of the other models on (almost) all metrics. Also note that removing the 3d convolutional layers
and replacing their outputs with learnable constants significantly degrades performance on both
trajectory prediction models. “DNF” indicates the model did not finish a lap.

24

Model
Configuration

Laps To
Failure

Bzier Curve Predictor 106
Bzier Curve Predictor
(No 3d Convolution)

86

Waypoint Predictor 11
Waypoint Predictor
(No 3d Convolution)

1

Table 2: The results of out longevity testing. Both fully end-to-end models did not complete a single
lap and are excluded from this table.

Model
Configuration

Mean
Runtime
(seconds)

Mean
Frequency

(Hz)
Image Buffer 0.000707 1,414.42

PilotNet 0.008 125
CNNLSTM 0.011 90.90

Waypoint Predictor 0.040 25
Waypoint Predictor
(No 3d Convolution)

0.0370 27.034

Bzier Curve Predictor 0.061 16.396
Bzier Curve Predictor
(No 3d Convolution)

0.056 17.816

Table 3: The runtime of each model as well as the thread for maintaining the image buffer. The
Bezier Curve Predictor is the slowest model, but is still sufficiently fast for an autonomous driving
task. Also note that the image buffer thread operates an order of magnitude faster than any of the
tested models, indicating the risk of dropping an image due to computational overhead is very low.

25

Additionally, note that the separate thread maintaining the image buffer runs at over 1414Hz,
several orders of magnitude faster than the image capture rate of our infrastructure, indicating the
risk that this approach will drop images and produce discontinuous image sequences is negligible.

7 Conclusion and Future Work

7.1 Discussion

In this paper, we address the problem of learning expert agile driving behavior from demonstration.
We consider motor-sport racing as the proxy for agile driving since it involved high speed driving
at the limits of control, and often in close proximity of other vehicles. This hypothesis leads us to
the problem of learning how to autonomous race in a realistic motor-sport racing environment. One
of our primary contribution is DeepRacing - a novel end-to-end framework, and a virtual testbed
for training and evaluating algorithms for the hard challenge of autonomous racing. The virtual
testbed is implemented using a highly realistic and professional Formula One gaming environment.
Our open-source DeepRacing framework, which is integrated with ROS2, will enable researchers to
explore the limits of vision based end-to-end autonomous racing.

In addition, we also develop and present a new parametrized trajectory-based end-to-end train-
able network for autonomous racing. Our novel AdmiralNet architecture, which uses Bézier Curves
to parameterize a lower-dimensional manifold within the task space of the ego vehicle, outperforms
traditional end-to-end networks by a very large margin and outperforms waypoint-based planning
by ∼ 5 seconds in terms of lap time and by over 100% in terms of time between failures, all while
being robust and computationally tractable.

7.2 Future Work

The results and the work so far has focused on autonomous racing in a time-trial manner, i.e. only
one vehicle on the track at a time. Our ongoing and future work include a more focused study
of head-to-head racing (multi-agent setting) with a stronger focus on real-world racing metrics
like lap time and overall race position. We also intend to explore and compare our method with
reinforcement learning based approaches for this problem. Additionally, this work does not address
how the agile behavior learned in a racing environment can make day-to-day driving safer. This
challenging question of transferring agile behavior between domains is the subject of our future
research in this area.

References

Global championship of driverless cars. url=https://roborace.com/, journal=Roborace.

Formula one esports series. F1 Esports, Nov. 2017. https://f1esports.com/.

Max verstappen trains using sim racing and shows incredible speed in both. Redline UK, 2017.
http://www.teamredline.co.uk/work/max-verstappen/.

Tesla car that crashed and killed driver was running on autopilot, firm says. The
Guardian, Mar 2018. https://www.theguardian.com/technology/2018/mar/31/
tesla-car-crash-autopilot-mountain-view.

F. Altch and A. de La Fortelle. An lstm network for highway trajectory prediction. In 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC), pages 353–359, Oct
2017. doi: 10.1109/ITSC.2017.8317913.

26

https://f1esports.com/
http://www.teamredline.co.uk/work/max-verstappen/
https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilot-mountain-view
https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilot-mountain-view

S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma. An optimal-control-based framework
for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles
in hazard avoidance scenarios. International Journal of Vehicle Autonomous Systems, 8(2-4):
190–216, 2010.

M. Bansal, A. Krizhevsky, and A. S. Ogale. Chauffeurnet: Learning to drive by imitating the best and
synthesizing the worst. CoRR, abs/1812.03079, 2018. URL http://arxiv.org/abs/1812.03079.

A. Best, S. Narang, D. Barber, and D. Manocha. Autonovi: Autonomous vehicle planning with
dynamic maneuvers and traffic constraints. In 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 2629–2636. IEEE, 2017.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-
fort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. D. Jackel, and U. Muller.
Explaining how a deep neural network trained with end-to-end learning steers a car. CoRR,
abs/1704.07911, 2017. URL http://arxiv.org/abs/1704.07911.

A. Brown et al. Udacity self-driving car simulator. In GitHub Repository. 2018.

M. Buehler, K. Iagnemma, and S. Singh. The DARPA urban challenge: autonomous vehicles in city
traffic, volume 56. springer, 2009.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for direct perception
in autonomous driving. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

D. Chen, B. Zhou, V. Koltun, and P. Krhenbhl. Learning by cheating, 2019.

L. Chi and Y. Mu. Learning end-to-end autonomous steering model from spatial and temporal visual
cues. In Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities,
VSCC ’17, pages 9–16, NY, USA, 2017. ACM. ISBN 978-1-4503-5506-3. doi: 10.1145/3132734.
3132737. URL http://doi.acm.org/10.1145/3132734.3132737.

Codemasters. F1 2017 d-box and udp output specification. http://forums.codemasters.com/
discussion/53139/f1-2017-d-box-and-udp-output-specification.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. arXiv preprint arXiv:1711.03938, 2017.

S. Eizikovich. vjoy. http://vjoystick.sourceforge.net/site/.

H. M. Eraqi, M. N. Moustafa, and J. Honer. End-to-end deep learning for steering autonomous
vehicles considering temporal dependencies. CoRR, abs/1710.03804, 2017. URL http://arxiv.
org/abs/1710.03804.

T. Fernando, S. Denman, S. Sridharan, and C. Fookes. Going deeper: Autonomous steering with
neural memory networks. In IEEE Conference on Computer Vision and Pattern Recognition, pages
214–221, Hawaii Convention Center HI, 2017. URL https://eprints.qut.edu.au/114117/.

J. L. Foo, J. Knutzon, V. Kalivarapu, J. Oliver, and E. Winer. Path planning of unmanned aerial
vehicles using b-splines and particle swarm optimization. Journal of aerospace computing, Infor-
mation, and communication, 6(4):271–290, 2009.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm.
1999.

27

http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1704.07911
http://doi.acm.org/10.1145/3132734.3132737
http://forums.codemasters.com/discussion/53139/f1-2017-d-box-and-udp-output-specification
http://forums.codemasters.com/discussion/53139/f1-2017-d-box-and-udp-output-specification
http://vjoystick.sourceforge.net/site/
http://arxiv.org/abs/1710.03804
http://arxiv.org/abs/1710.03804
https://eprints.qut.edu.au/114117/

S. J. Huston and H. G. Krapp. Visuomotor transformation in the fly gaze stabilization system. PLoS
biology, 6(7):e173, 2008.

J. Janai, F. Güney, A. Behl, and A. Geiger. Computer vision for autonomous vehicles: Problems,
datasets and state-of-the-art. CoRR, abs/1704.05519, 2017. URL http://arxiv.org/abs/1704.
05519.

M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan. Driving in
the matrix: Can virtual worlds replace human-generated annotations for real world tasks? arXiv
preprint arXiv:1610.01983, 2016.

C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka. Real-time motion planning methods for
autonomous on-road driving: State-of-the-art and future research directions. Transportation Re-
search Part C: Emerging Technologies, 60:416–442, 2015.

G. Katz, A. Roushan, and A. Shenoi. Supervised learning for autonomous driving.

B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi. Probabilistic vehicle
trajectory prediction over occupancy grid map via recurrent neural network. In 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC), pages 399–404, Oct 2017.
doi: 10.1109/ITSC.2017.8317943.

S. Koppula. Learning a cnn-based end-to-end controller for a formula sae racecar. arXiv preprint
arXiv:1708.02215, 2017.

F.-L. Lian and R. Murray. Real-time trajectory generation for the cooperative path planning of
multi-vehicle systems. In Proceedings of the 41st IEEE Conference on Decision and Control,
2002., volume 4, pages 3766–3769. IEEE, 2002.

M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers for autonomous
vehicles. The International Journal of Robotics Research, 28(8):933–945, 2009.

A. C. Madrigal. Inside waymos secret world for training self-driving cars. The Atlantic, 23, 2017.

A. I. Maqueda, A. Loquercio, G. Gallego, N. N. Garćıa, and D. Scaramuzza. Event-based vision
meets deep learning on steering prediction for self-driving cars. CoRR, abs/1804.01310, 2018.
URL http://arxiv.org/abs/1804.01310.

J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monocular vision and
reinforcement learning. In Proceedings of the 22nd International Conference on Machine Learning,
ICML 05, page 593600, New York, NY, USA, 2005. Association for Computing Machinery. ISBN
1595931805. doi: 10.1145/1102351.1102426. URL https://doi.org/10.1145/1102351.1102426.

E. Mohammed, M. Abdou, and O. Ahmed Nasr. End-to-end deep path planning and automatic
emergency braking camera cocoon-based solution. In Machine Learning for Autonomous Driving,
NeurIPS 2019 Workshop, December 2019.

M. E. Mortenson. Mathematics for Computer Graphics Applications: An Introduction to the Mathe-
matics and Geometry of CAD/Cam, Geometric Modeling, Scientific Visualizati. Industrial Press,
Inc., USA, 2nd edition, 1999. ISBN 083113111X.

W. Naeem, R. Sutton, and S. Ahmad. Pure pursuit guidance and model predictive control of an au-
tonomous underwater vehicle for cable/pipeline tracking. In Proceedings-Institute of Marine Engi-
neering Science and Technology Part C Journal of Marine Science and Environment, pages 25–35.
THE INSTITUTE OF MARINE ENGINEERING, SCIENCE AND TECHNOLOGY, 2004.

X. Pan, Y. You, Z. Wang, and C. Lu. Virtual to real reinforcement learning for autonomous driving,
2017.

28

http://arxiv.org/abs/1704.05519
http://arxiv.org/abs/1704.05519
http://arxiv.org/abs/1804.01310
https://doi.org/10.1145/1102351.1102426

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng, D. Rus, and M. Ang. Perception,
planning, control, and coordination for autonomous vehicles. Machines, 5(1):6, 2017.

E. Perot, M. Jaritz, M. Toromanoff, and R. De Charette. End-to-end driving in a realistic racing
game with deep reinforcement learning. In International conference on Computer Vision and
Pattern Recognition-Workshop, 2017.

S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for data: Ground truth from computer
games. CoRR, abs/1608.02192, 2016a. URL http://arxiv.org/abs/1608.02192.

S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for data: Ground truth from computer
games. In European Conference on Computer Vision, pages 102–118. Springer, 2016b.

M. Samuel, M. Hussein, and M. B. Mohamad. A review of some pure-pursuit based path tracking
techniques for control of autonomous vehicle. International Journal of Computer Applications,
135(1):35–38, 2016.

E. Santana and G. Hotz. Learning a driving simulator. CoRR, abs/1608.01230, 2016. URL http:
//arxiv.org/abs/1608.01230.

W. Scacchi. Autonomous emotorsports racing games: Emerging practices as speculative fictions.
Journal of Gaming & Virtual Worlds, 10(3):261–285, 2018.

S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics, 2017. URL https://arxiv.org/abs/1705.
05065.

D. Wakabayashi. Self-driving uber car kills pedestrian in arizona, where robots roam. New York
Times. https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.
html.

R. S. Wallace, A. Stentz, C. E. Thorpe, H. P. Moravec, W. Whittaker, and T. Kanade. First results
in robot road-following. In IJCAI, pages 1089–1095. Citeseer, 1985.

T. Weiss and M. Behl. Deepracing: A framework for agile autonomy. Design, Automation and Test in
Europe Conference, 2020. URL https://past.date-conference.com/proceedings-archive/
2020/html/1027.html.

B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner. Torcs, the open
racing car simulator. Software available at http://torcs. sourceforge. net, 4:6, 2000.

H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-scale video
datasets. CoRR, abs/1612.01079, 2016a. URL http://arxiv.org/abs/1612.01079.

H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-scale video
datasets. CoRR, abs/1612.01079, 2016b. URL http://arxiv.org/abs/1612.01079.

29

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1608.01230
http://arxiv.org/abs/1608.01230
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://past.date-conference.com/proceedings-archive/2020/html/1027.html
https://past.date-conference.com/proceedings-archive/2020/html/1027.html
http://arxiv.org/abs/1612.01079
http://arxiv.org/abs/1612.01079

	1 Introduction
	1.1 Contributions of this paper

	2 Problem Statement:
	2.1 End-To-End Driving (Pixels to Control)
	2.2 Trajectory Prediction - Pixels to Waypoints
	2.3 Trajectory Prediction - Pixels to Bezier Curves

	3 Related Work
	3.1 Autonomous driving simulators
	3.2 Autonomous Driving Architectures: Fully End To End
	3.3 Autonomous Driving Architectures: Pixels to Trajectories
	3.4 Autonomous Driving Architectures: Other Approaches

	4 DeepRacing: F1 Racing Simulation
	4.1 DeepRacing realism
	4.2 UDP data stream
	4.3 DeepRacing framework
	4.3.1 Data Synchronization

	4.4 Open-loop testing
	4.5 Closed-loop testing
	4.6 DeepRacing API
	4.7 DeepRacing ROS2 Interface:

	5 AdmiralNet: Mapping Context to Intent
	5.1 Pure Pursuit Control
	5.2 Bézier Curves
	5.3 Fully End-To-End Baseline
	5.4 AdmiralNet For Waypoint Prediction
	5.5 AdmiralNet For Bézier Curve Prediction
	5.6 Comments on Implementation Details

	6 Experimental Results
	6.1 Data Logging Infrastructure
	6.2 Neural Network Architectures
	6.2.1 Open-Loop RMSE Results
	6.2.2 Closed Loop (Driving Performance) Results

	6.3 Computation Time Analysis

	7 Conclusion and Future Work
	7.1 Discussion
	7.2 Future Work

